Computational sample FA (98 Mb) |
Computational sample FB (95 Mb) |
Computational sample FC (802 Mb) |
Computational sample FD (552 Mb) |

(1-3) x, y, z coordinates of the nodes (in Angstroms),

(4) ID of the parent carbon nanotube for each node,

(5) local thickness of the bundle the node contributes to, defined as the number of nanotubes in a bundle cross section,

(6) flag specifying bending buckling state of the node (1 for buckling kink),

(7) flag defining the place of the node in the nanotube (0 for first and last nodes).

**The procedure developed for generation of the computational samples shown above, along with several examples of the applications of the mesoscopic modeling of
VACNT forests are described in this paper:**

B. K. Wittmaack, A. H. Banna, A. N. Volkov, and L. V. Zhigilei,
Mesoscopic modeling of structural self-organization of carbon nanotubes into vertically aligned networks of nanotube bundles, *Carbon* **130**, 69-86, 2018.

**Full Text:** PDF, doi:10.1016/j.carbon.2017.12.078

L. V. Zhigilei, R. N. Salaway, B. K. Wittmaack, and A. N. Volkov,
Computational studies of thermal transport properties of carbon nanotube materials, in *Carbon Nanotubes for Interconnects: Process, Design and Applications*, Edited by A. Todri-Sanial, J. Dijon and A. Maffucci (Springer, 2017), pp. 129-161

**Full Text:** PDF, doi:10.1007/978-3-319-29746-0_5

W. M. Jacobs, D. A. Nicholson, H. Zemer, A. N. Volkov, and L. V. Zhigilei,
Acoustic energy dissipation and thermalization in carbon nanotubes: Atomistic modeling and mesoscopic description, *Phys. Rev. B* **86**, 165414, 2012.

**Full Text:** PDF, doi:10.1103/PhysRevB.86.165414

A. N. Volkov and L. V. Zhigilei,
Heat conduction in carbon nanotube materials: Strong effect of intrinsic thermal conductivity of carbon nanotubes, *Appl. Phys. Lett.* **101**, 043113, 2012.

**Full Text:** PDF, doi:10.1063/1.4737903

A. N. Volkov, T. Shiga, D. Nicholson, J. Shiomi, and L. V. Zhigilei,
Effect of bending buckling of carbon nanotubes on thermal conductivity of carbon nanotube materials, *J. Appl. Phys.* **111**, 053501, 2012.

**Full Text:** PDF, doi:10.1063/1.3687943

L. V. Zhigilei, A. N. Volkov, E. Leveugle, and M. Tabetah,
The effect of the target structure and composition on the ejection and transport of polymer molecules and carbon nanotubes in matrix-assisted pulsed laser evaporation, *Appl. Phys. A* **105**, 529-546, 2011.

**Full Text:** PDF, doi:10.1007/s00339-011-6595-6

A. N. Volkov and L. V. Zhigilei,
Massively parallel mesoscopic simulations of gas permeability of thin films composed of carbon nanotubes, in *Computational Fluid Dynamics 2010*, A. Kuzmin (ed.), (Springer-Verlag, Berlin, Heidelberg, 2011), pp. 823-831.

**Full Text:** PDF, doi:10.1007/978-3-642-17884-9_104

A. N. Volkov and L. V. Zhigilei,
Structural stability of carbon nanotube films: The role of bending buckling, *ACS Nano* **4**, 6187-6195, 2010.

**Full Text:** PDF

A. N. Volkov and L. V. Zhigilei,
Scaling laws and mesoscopic modeling of thermal conductivity in carbon nanotube materials, *Phys. Rev. Lett.* **104**, 215902, 2010.

**Full Text:** PDF and Supporting Information (48 kB)

A. N. Volkov and L. V. Zhigilei,
Mesoscopic interaction potential for carbon nanotubes of arbitrary length and orientation, *J. Phys. Chem. C* **114**, 5513-5531, 2010.

**Full Text:** PDF and Supporting Information (116 kB)

A. N. Volkov, K. R. Simov, and L. V. Zhigilei,
Mesoscopic simulation of self-assembly of carbon nanotubes into a network of bundles, *Proceedings of the 47 ^{th} AIAA Aerospace Sciences Meeting*, AIAA paper 2009-1544, 2009.

L. V. Zhigilei, C. Wei, and D. Srivastava,
Mesoscopic model for dynamic simulations of carbon nanotubes, *Phys. Rev. B* **71**, 165417, 2005.

**Full Text:** PDF