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Abstract. Let (S , ∗) be a closed oriented surface with a marked point, let G be a fixed group, and let ρ : π1(S ) −→ G
be a representation such that the orbit of ρ under the action of the mapping class group Mod(S , ∗) is finite. We prove
that the image of ρ is finite. A similar result holds if π1(S ) is replaced by the free group Fn on n ≥ 2 generators and
where Mod(S , ∗) is replaced by Aut(Fn). We thus resolve a well–known question of M. Kisin. We show that if G is a
linear algebraic group and if the representation variety of π1(S ) is replaced by the character variety, then there are infinite
image representations which are fixed by the whole mapping class group.

1. Introduction

Let G and Γ be groups, and let
R(Γ,G) := Hom(Γ,G)

be the representation variety of Γ. The automorphism group Aut(Γ) acts on R(Γ,G) by precomposition.

Let Γ = π1(S ), where S is a closed, orientable surface of genus at least two with a base-point ∗. The Dehn–
Nielsen–Baer Theorem (see [FM]) implies that the mapping class group Mod(S , ∗) of S which preserves ∗ is
identified with an index two subgroup of Aut(Γ). In this note, we show that if ρ ∈ R(π1(S ),G) has a finite
Mod(S , ∗)–orbit, then the image of ρ is finite, thus resolving a well–known question which is often attributed to M.
Kisin. We show that the same conclusion holds if π1(S ) is replaced by a free group Fn of finite rank n ≥ 2, and
Mod(S , ∗) is replaced by Aut(Fn).

1.1. Main results. In the sequel, we assume that S is a closed, orientable surface of genus g ≥ 2 and that Fn is a
free group of rank at least two, unless otherwise stated explicitly.

Theorem 1.1. Let Γ = π1(S ) or Fn, and let G be an arbitrary group. Suppose that ρ ∈ R(Γ,G) has a finite orbit
under the action of Aut(Γ). Then ρ(Γ) is finite.

Note that if Γ = π1(S ) then ρ has a finite orbit under Aut(Γ) if and only if it has a finite orbit under Mod(S , ∗)
because Mod(S , ∗) is a subgroup of Aut(Γ) of finite index. Note also that if the homomorphism ρ has a finite image
then the orbit of ρ for the action of Aut(Γ) on R(Γ,G) is finite, because Γ is finitely generated.

We will show by example that Theorem 1.1 fails for a general group Γ. Moreover, Theorem 1.1 fails if Γ is a
linear algebraic group with the representation variety of Γ being replaced by the character variety Hom(Γ,G)/G:

Proposition 1.2. Let Γ = π1(S ) and let

X(Γ,GLn(C)) := Hom(Γ,GLn(C))//GLn(C)

be its GLn(C) character variety. For n � 0, there exists a point χ ∈ X(Γ,GLn(C)) such that χ is the character of
a representation with infinite image while the action of Mod(S , ∗) on X(Γ,GLn(C)) fixes χ.

1.2. Punctured surfaces. If S is not closed then π1(S ) is a free group, and the group Mod(S , ∗) is identified with a
subgroup of Aut(π1(S )), though this subgroup does not have finite index. The conclusion of Theorem 1.1 remains
valid if S is a once–punctured surface of genus g ≥ 1 and Aut(π1(S )) is replaced by Mod(S , ∗), though it fails for
general punctured surfaces. See Proposition 4.2.
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2. Aut(Γ)–invariant representations

We first address the question in the special case where the Aut(Γ)–orbit of ρ : Γ −→ G on R(Γ,G) consists of
a single point.

Lemma 2.1. Let Γ be any group, and suppose that ρ ∈ R(Γ,G) is Aut(Γ)–invariant. Then ρ(Γ) is abelian.

Proof. Since ρ ∈ R(Γ,G) is invariant under the normal subgroup Inn(Γ) < Aut(Γ) consisting of inner automor-
phisms,

ρ(ghg−1) = ρ(h)

for all g, h ∈ G. Hence we have ρ(g)ρ(h) = ρ(h)ρ(g). �

Lemma 2.2. Let Γ = π1(S ) or Γ = Fn, and let ρ : Γ −→ G be Aut(Γ)–invariant. Then ρ(Γ) is trivial.

Proof. Without loss of generality, assume that ρ(Γ) = G. By Lemma 2.1, the group ρ(Γ) is abelian. Hence ρ
factors as

ρ = ρab ◦ A , (1)

where

A : Γ −→ Γ/[Γ, Γ] = H1(Γ, Z)

is the abelianization map, and ρab : H1(Γ,Z) −→ G is the induced representation of H1(Γ,Z). Let g be the genus of
S , so that the rank of H1(Γ, Z) is 2g. Fix a symplectic basis

{a1, . . . , ag, b1, . . . , bg}

of H1(Γ, Z). So the group of automorphisms of H1(Γ, Z) preserving the cap product is identified with Sp2g(Z).

Suppose that ρ(Γ) is not trivial. Then there exists z ∈ H1(Γ, Z) such that ρab(z) is not trivial. Consider the
action of Sp2g(Z) on H1(Γ, Z), induced by the action of the mapping class group Mod(S , ∗) on H1(Γ, Z). There is
an element of Sp2g(Z) taking ai to ai + bi. Therefore, from the given condition that the action of Mod(S , ∗) on ρ
has a trivial orbit it follows that ρab(ai) = ρab(ai + bi), and hence ρab(bi) = 0. Exchanging the roles of ai and of bi,
we have ρab(ai) = 0. Thus ρab is a trivial representation, and hence ρ is also trivial by (1).

A similar argument works if we set Γ = Fn. Instead of Sp2g(Z), we have an action of GLn(Z) on H1(Γ, Z) after
choosing a basis {a1, . . . , an} for H1(Γ, Z). Then for each 1 ≤ j ≤ n and i , j, there exist an element of GLn(Z)
that takes ai to ai + a j. This implies that ρab(a j) = 0 as before. �

There is an immediate generalization of Lemma 2.2 whose proof is identical to the one given:

Lemma 2.3. Let Γ be group, let

H1(Γ,Z)Out(Γ) = H1(Γ, Z)/〈φ(v) − v | v ∈ H1(Γ, Z) and φ ∈ Out(Γ)〉

be the module of co–invariants of the Out(Γ) action on H1(Γ, Z), and let ρ ∈ R(Γ,G) be an Aut(Γ)–invariant
representation of Γ. If H1(Γ,Z)Out(Γ) = 0 then ρ(Γ) is trivial. If H1(Γ,Z)Out(Γ) is finite then ρ(Γ) is finite as well.

Corollary 2.4. Let Γ be a closed surface group or a finitely generated free group, and let H < Aut(Γ) be a finite
index subgroup. Then the module of H–co–invariants for H1(Γ, Z) is finite.

Proof. Since H < Aut(Γ) has finite index, there exists an integer N such that for each φ ∈ Aut(Γ), we have
φN ∈ H. In particular, the N th powers of the transvections occurring in the proof of Lemma 2.2 lie in H, whence
the N th powers of elements of a basis for H1(Γ, Z) must be trivial. Consequently, the module of H–co–invariants
is finite. �



REPRESENTATIONS OF SURFACE GROUPS WITH FINITE ORBITS 3

3. Representations with a finite orbit

3.1. Central extensions of finite groups.

Lemma 3.1. Let Γ be any group, and let ρ : Γ −→ G be a representation. Suppose that the orbit of ρ under the
action of Aut(Γ) on R(Γ,G) is finite. Then ρ(Γ) is a central extension of a finite group.

Proof. The given condition implies that for the action of Inn(Γ) on R(Γ,G), the orbit of ρ is finite. Consequently,
there exists a finite index subgroup Γ1 of Γ that fixes ρ under the inner action. Hence by the argument in Lemma
2.1, the group ρ(Γ1) commutes with ρ(Γ), so the center of ρ(Γ) contains ρ(Γ1). Since Γ1 is of finite index in Γ, the
result follows. �

Lemma 3.2. Let ρ be as in Lemma 3.1 and let H = Stab(ρ) < Aut(Γ) be the stabilizer of ρ. Then the center of ρ(Γ)
is equal to its module of co–invariants under the H–action.

Proof. This is immediate, since ρ(Γ) is invariant under the action of H. Thus, if z lies in the center of ρ(Γ) then
φ(z) = z for all φ ∈ H. In particular, the subgroup of the center of ρ(Γ) generated by elements of the form φ(z) − z
is trivial. �

3.2. Homology of finite index subgroups. Let Γ be a finitely generated group, and let ρ ∈ R(Γ,G) be a rep-
resentation whose orbit under the action of Aut(Γ) is finite. By Lemma 3.1, we have that ρ(Γ) fits into a central
extension:

1 −→ Z −→ ρ(Γ) −→ F −→ 1 ,

where F is a finite group and Z is a finitely generated torsion–free abelian group lying in the center of ρ(Γ).

Consider the group N = ρ−1(Z) < Γ. This is a finite index subgroup of Γ, since Z has finite index in ρ(Γ). By
replacing N by a further finite index subgroup of Γ if necessary, we may assume that N is characteristic in Γ and
hence N is invariant under automorphisms of Γ.

Since Z is an abelian group, we have that the restriction of ρ to N factors through the abelianization H1(N, Z).
As before, we write ρab : H1(N,Z) −→ Z for the corresponding map, and we write Q = Γ/N. The group Γ acts by
conjugation on N and on H1(N, Z), and on Z via ρ, thus turning both H1(N, Z) and Z into Z[Γ]–modules. Observe
that the Γ–action on H1(N, Z) turns this group into a Z[Q]–module, and that the Z[Γ]–module structure on Z is
trivial. Note that the map ρab is a homomorphism of Z[Γ]–modules. Summarizing the previous discussion, we
have that following diagram commutes Γ–equivariantly:

N

ρ

��

A // H1(N,Z)

ρab

{{vvvvvvvvv

Z

3.3. Chevalley–Weil Theory. Let Γ be a group, and let N < Γ be a finite index normal subgroup with quotient
group

Q := Γ/N . (2)

When Γ is a closed surface group or a finitely generated free group, it is possible to describe H1(N, Q) as a Q[Q]–
module. We address closed surface groups first:

Theorem 3.3 (Chevalley–Weil Theory for surface groups, [CW], see also [GLLM, Ko]). Let S = S g be a closed
surface of genus g, and let Γ = π1(S ). Then there is an isomorphism of Q[Q]–modules (defined in (2))

H1(N,Q)
∼
−→ ρ

2g−2
reg ⊕ ρ

2
0 ,

where ρreg is the regular representation of Q and ρ0 is the trivial representation of Q. Moreover, the invariant
subspace of H1(N, Q) is Aut(Γ)–equivariantly isomorphic to H1(Γ, Q) via the transfer map.

The corresponding statement for finitely generated free groups was also observed by Gaschütz, and is identical
to the statement for surface groups, mutatis mutandis:
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Theorem 3.4 (Chevalley–Weil Theory for free groups, [CW], see also [GLLM, Ko]). Let Γ = Fn be a free group
of rank n. Then there is an isomorphism of Q[Q]–modules

H1(N,Q)
∼
−→ ρn−1

reg ⊕ ρ0 ,

where ρreg is the regular representation of Q and ρ0 is the trivial representation of Q. Moreover, the invariant
subspace of H1(N, Q) is Aut(Γ)–equivariantly isomorphic to H1(Γ, Q) via the transfer map.

Tensoring with Q, we have a map
ρab ⊗ Q : H1(N,Q) −→ Z ⊗ Q

which is a homomorphism of Q[Γ]–modules since the natural map ρab : H1(N,Z) −→ Z is Γ–equivariant. We
decompose H1(N,Q) = V0

⊕(
⊕χ Vχ

)
according to its structure as a Q[Γ]–module, where V0 is the invariant

subspace and χ ranges over nontrivial irreducible characters of Q.

Note that since N is characteristic in Γ, the group Aut(Γ) acts on H1(N,Q) and this action preserves V0. More-
over, Theorems 3.3 and 3.4 imply that the Aut(Γ)–action on V0 is canonically isomorphic to the Aut(Γ) action on
H1(Γ, Q), by the naturality of the transfer map.

We are now ready to prove the main result of this note:

Proof of Theorem 1.1. By the discussion above, it suffices to prove that the group Z is finite, or equivalently that
the vector space Z ⊗ Q is trivial.

Considering the image of each irreducible representation Vχ under ρab ⊗ Q, from Schur’s Lemma it is deduced
that either Vχ is in the kernel of ρab ⊗ Q or it is mapped isomorphically onto its image. Since ρab ⊗ Q is a Q[Γ]–
module homomorphism and since Z ⊗ Q is a trivial Q[Γ]–module, we have that Vχ ⊂ ker ρab ⊗ Q whenever χ is a
nontrivial irreducible character of Q. It follows that Z ⊗ Q is a quotient of V0.

Since the Aut(Γ)–actions on H1(Γ, Z) and on V0 are isomorphic, Corollary 2.4 implies that the module of
rational H–co–invariants for V0 is trivial for any finite index subgroup H < Aut(Γ), meaning

V0/〈φ(v) − v | v ∈ V0 and φ ∈ H〉 = 0.

Let H = Stab(ρ) < Aut(Γ) be the stabilizer of ρ, which has finite index in Aut(Γ) by assumption. Since ρ is
H–invariant, we have that Z ⊗ Q is also H–invariant. Let v ∈ V0 be an element which does not lie in the kernel of
ρab ⊗ Q. Since the module of H–co–invariants of V0 is trivial, we have that

v0 =

k∑
i=1

ai(φ(vi) − vi)

for suitable vectors (v1, . . . , vk) ∈ Vk
0 , rational numbers (a1, . . . , ak) ∈ Qk, and automorphisms (φ1, . . . , φk) ∈ Hk.

Applying ρab ⊗ Q, we have

(ρab ⊗ Q)(v0) =

k∑
i=1

ai · (ρab ⊗ Q)(φ(vi) − vi).

Since ρ and Z are both H–invariant, we have that (ρab ⊗ Q)(φ(vi) − vi) = 0, whence (ρab ⊗ Q)(v0) = 0. Thus,
v0 ∈ ker ρab ⊗ Q, and consequently Z ⊗ Q = 0. �

4. Counterexamples for general groups

It is not difficult to see that Theorem 1.1 is false for general groups. We have the following easy proposition:

Proposition 4.1. Let Γ be a finitely generated group such that Γ surjects to Z and such that Out(Γ) is finite.
Then there exists a group G and a representation ρ ∈ R(Γ,G) such that ρ has infinite image and such that the
Aut(Γ)–orbit of ρ is finite.

Proof. Set
G = Γab

and let ρ be the abelianization map. Since Out(Γ) is finite, we have that Aut(Γ) induces only finitely many distinct
automorphisms of G, and hence ρ has a finite orbit under the Aut(Γ) action on ρ ∈ R(Γ,G). �
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It is easy to see that Proposition 4.1 generalizes to the case where ρ has infinite abelian image with G being an
arbitrary group.

There are many natural classes of groups which satisfy the hypotheses of Proposition 4.1. For instance, one
can take a cusped finite volume hyperbolic 3–manifold or a closed hyperbolic 3–manifold with positive first Betti
number; every closed hyperbolic 3–manifold has such a finite cover by the work of Agol [Ag]. The fundamental
groups of these manifolds are finitely generated with infinite abelianization, and by Mostow Rigidity, their groups
of outer automorphisms are finite.

Another natural class of groups satisfying the hypotheses of Proposition 4.1 is the class of random right-angled
Artin groups, in the sense of Charney–Farber [CF]. Every right-angled Artin group has infinite abelianization,
though many have infinite groups of outer automorphisms. Certain graph theoretic conditions which are satisfied
by finite graphs in a suitable random model guarantee that the outer automorphism group is finite, however. An
explicit right-angled Artin group with a finite group of outer automorphisms is the right-angled Artin group on the
pentagon graph.

Let Dn denote the disk with n punctures. The mapping class group Mod(Dn, ∂Dn) is identified with the braid
group Bn on n strands, and naturally sits inside of Aut(Fn) = Aut(π1(Dn)). The following easy proposition
illustrates another failure of Theorem 1.1 to generalize:

Proposition 4.2. Let G be a group which contains an element of infinite order. Then there exists an infinite image
representation ρ ∈ R(Fn,G) which is fixed by the action of Bn < Aut(Fn).

Proof. Small loops about the punctures of Dn can be connected to a base-point on the boundary of Dn in order
to obtain a free basis for π1(Dn). Since the braid group consists of isotopy classes of homeomorphisms of Dn,
we have that Bn acts on the homology classes of these loops by permuting them. Therefore, we may let ρ be the
homomorphism Fn −→ Z obtained by taking the exponent sum of a word in the chosen free basis for π1(Dn),
and then sending a generator for Z to an infinite order element of G. It is clear from this construction that ρ is
Bn–invariant and has infinite image. �

5. Character varieties

In this section we prove Proposition 1.2, which relies on one of the results in [KS]. Recall that if S is an
orientable surface with negative Euler characteristic then the Birman Exact Sequence furnishes a normal copy of
π1(S ) inside of the pointed mapping class group Mod(S , ∗) (see [Bi, FM]).

Theorem 5.1 (cf. [KS], Corollary 4.3). There exists a linear representation ρ : Mod(S , ∗) −→ PGLn(C) such
that the restriction of ρ to π1(S ) has infinite image.

We remark that in Theorem 5.1, it can be arranged for the image of π1(S ) under ρ to have a free group in its
image, as discussion in [KS]. Theorem 5.1 implies Proposition 1.2 without much difficulty.

Proof of Proposition 1.2. Let a representation σ : Mod(S , ∗) −→ PGLn(C) be given as in Theorem 5.1. Choose
an arbitrary embedding of PGLn(C) into GLm(C) for some m ≥ n, and let ρ be the corresponding representation
of Mod(S , ∗) obtained by composing σ with the embedding. We will write χ for its character, and we claim that
this χ satisfies the conclusions of the proposition.

That χ corresponds to a representation of π1(S ) with infinite image is immediate from the construction. Note
that χ is actually the character of a representation of Mod(S , ∗), and that Inn(Mod(S , ∗)) acts on X(Mod(S , ∗))
trivially. It follows that Inn(Mod(S , ∗)) fixes χ even when χ is viewed as a character of π1(S ), since

π1(S ) < Mod(S , ∗)

is normal. The conjugation action of Mod(S , ∗) on π1(S ) is by automorphisms via the natural embedding Mod(S , ∗) <
Aut(π1(S )). It follows that χ is invariant under the action of Mod(S , ∗), the desired conclusion. �
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