
RESIDUAL PROPERTIES OF FIBERED AND HYPERBOLIC 3–MANIFOLDS

THOMAS KOBERDA

Abstract. We study the residual properties of geometric 3–manifold groups. In particular, we
study conditions under which geometric 3–manifold groups are virtually residually p for a prime
p, and conditions under which they are residually torsion–free nilpotent. We show that for every
prime p, every geometric 3–manifold group is virtually residually p. We show that geometric 3–
manifold groups are virtually residually torsion–free nilpotent precisely when they do not arise from
Sol geometry.
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1. Introduction

1.1. Statement of Results. Let M be a prime, compact, orientable 3–manifold with χ(M) = 0.
The Geometrization Theorem (see [19], [20], [21], [25], [26]) says that there exists a finite collection
of incompressible tori {Ti} ⊂M such that each component of

M \
⋃
i

Ti

admits a geometric structure of finite volume. Precisely, let Mi be a component of

M \
⋃
i

Ti.

Then there is a finite volume, complete Riemannian metric on the interior of Mi such that the
universal cover M̃i is isometric to exactly one of the following spaces, called model geometries:
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(1) S3.
(2) S2 × R.
(3) R3.
(4) Nil.
(5) Sol.
(6) H2 × R.

(7) ˜PSL2(R).
(8) H3.

Whenever the interior of M admits a complete, finite–volume metric for which M̃ is isometric
to one of these eight spaces, we will say that M is geometric, or that it admits a geometric
structure. Thurston showed in [26] that given a 3–manifold which is known to be geometric, one
need not produce any metrics to determine which one of the eight geometric structures M admits.
It suffices to understand the structure of the fundamental group π1(M). The salient features of the
fundamental group which determine the geometric structure in order are as follows. A geometric
3–manifold M admits the corresponding geometric structure above if and only if π1(M) is:

(1) Finite.
(2) Virtually cyclic but not finite.
(3) Virtually abelian but not virtually cyclic.
(4) Virtually nilpotent but not virtually abelian.
(5) Virtually solvable but not virtually nilpotent.
(6) Virtually split as a trivial central extension by Z and contains a nonabelian free group.
(7) Virtually a nonsplit central extension by Z and contains a nonabelian free group, but does

not virtually split as a trivial central extension.
(8) Not virtually solvable and does not contain an infinite cyclic normal subgroup.

Here, a group G virtually has a property X if there is a finite index subgroup G′ of G with
property X.

In this article, we wish to explore some of the properties of the fundamental groups of geometric
3–manifolds. In particular, we will be interested in residual p–properties and residual torsion–free
nilpotence. For a prime p, we say that a group G is residually p if every nontrivial element of G
survives in a finite p–group quotient of G. We say that G is residually torsion–free nilpotent
if every nontrivial element of G survives in a torsion–free nilpotent quotient of G. Throughout this
paper, p will be used to denote a prime number.

The main result which we shall establish in this paper is the following:

Theorem 1.1. Let M be a geometric 3–manifold. Then π1(M) is virtually residually p. Fur-
thermore, π1(M) is virtually residually torsion–free nilpotent precisely when M does not admit Sol
geometry.

The proof of Theorem 1.1 we offer is not self–contained. It will rely on recent deep results in
hyperbolic geometry, in particular [2]. Below, we will indicate which parts of Theorem 1.1 will have
self–contained proofs given in this paper.

An important source of 3–manifolds comes from fibered 3–manifolds. These are 3–manifolds
which can be described as surface bundles over the circle. Write S for an orientable surface of
genus g and n punctures, and let Ψ ∈ Homeo+(S) be an orientation–preserving homeomorphism.
Assume without loss of generality that Ψ preserves at least one point of S, which we treat as a
basepoint for π1(S). The mapping torus TΨ is obtained by taking S× [0, 1] and identifying (x, 0)
with (Ψ(x), 1). The 3–manifold TΨ fits into a fibration

S → TΨ → S1.
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The fundamental group of TΨ can be presented as a semidirect product of the form

〈π1(S), t | t−1π1(S)t = Ψ∗(π1(S))〉.
Here, Ψ∗ is the π1(S)–automorphism induced by Ψ. It is a standard fact that the isomorphism type
of π1(TΨ) and the homeomorphism type of TΨ depend only on the isotopy class of Ψ, and thus only
on its image ψ in the mapping class group Mod(S). Thus, we may write Tψ for the mapping torus
of a mapping class ψ. We call ψ the monodromy of the fibration, S the fiber, and the generator
t of π1(Tψ) the stable letter.

We will establish Theorem 1.1 in several steps. We will first analyze the case of fibered 3–
manifolds in detail and prove the following:

Theorem 1.2. Let Tψ be a fibered 3–manifold. Then π1(Tψ) is virtually residually p.

The case of Sol geometry, which is to say of hyperbolic torus bundles over the circle, requires
special attention:

Theorem 1.3. Let TA be a hyperbolic torus bundle over the circle with monodromy A ∈ SL2(Z).
(1) The group π1(TA) is residually p if and only if p divides det(A− I).
(2) The group π1(TA) is not residually p for any p if and only if π1(TA) is not residually

nilpotent, if and only if A is conjugate over Q to(
2 1
1 1

)
.

We remark briefly the by hyperbolic torus bundle, we mean a torus bundle with hyperbolic
monodromy, not that the corresponding bundle is a hyperbolic manifold.

Manifolds modeled on ˜PSL2(R) and H2 × R geometry will be treated next. Recall that such
manifolds are all finitely covered by circle bundles over orientable surfaces:

Theorem 1.4. Let M be modeled on H2 × R or on ˜PSL2(R) geometry. Then π1(M) virtually
admits a faithful representation into π1(S)×H, where S is an orientable surface and where H is a
torsion–free nilpotent group. In particular, π1(M) is virtually residually torsion–free nilpotent and
virtually residually p for every prime.

An straightforward consequence of Theorem 1.4 is the following fact, which was known (see [9])
but whose proof is, to the author’s knowledge, new:

Corollary 1.5. Let M be a manifold modeled on ˜PSL2(R) geometry. Then π1(M) is linear over
Z.

Establishing residual torsion–free nilpotence for fibered 3–manifolds is generally harder than
residual p–properties for any particular prime, since the former implies the latter. We can prove
the following though:

Theorem 1.6. Let Tψ be a fibered 3–manifold with fiber S, and suppose that the action ψ∗ of ψ on
H1(S,Z) is unipotent. Then π1(Tψ) is residually torsion–free nilpotent.

Here, we say that ψ∗ is unipotent if the minimal polynomial of ψ∗ is x−1. Finally, we will offer
an approach to studying the residual properties of hyperbolic 3–manifold groups which essentially
reduces the problem to the case of fibered 3–manifolds. The statement of the result for which we
will give a self–contained proof is as follows:

Theorem 1.7. Suppose that every virtually Haken hyperbolic 3–manifold is virtually fibered. Let
M be a finite volume hyperbolic 3–manifold and let p be a prime. Then π1(M) is virtually residually
p.
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1.2. Notes and References. Residual properties of 3–manifold groups have been independently
studied by M. Aschenbrenner and S. Friedl in [3] and [4]. The recent resolution of the virtual Haken
conjecture and the virtual fibering conjecture (see [1], [2], [15], [30], [31]) establishes residual torsion–
free nilpotence of all finite volume hyperbolic 3–manifold groups. Aside from the establishment of
the most general case of Theorem 1.1, our discussion will be independent of those results.

Residual freeness of geometric 3–manifold groups was studies by H. Wilton in [29]. Therein, he
posed the question of whether geometric 3–manifold groups are residually torsion–free nilpotent.

It is a classical result of Mal’cev that finitely generated linear groups are virtually residually p
at all but at most finitely many primes. Finite volume hyperbolic 3–manifold groups are linear by
definition, and A. Lubotzky asked the author whether hyperbolic 3–manifold groups are virtually
residually p for every prime. Theorem 1.7 is a partial answer to Lubotzky’s question.

2. Acknowledgements

This work has benefitted from conversations with I. Agol, N. Avni, J. Behrstock, T. Church,
B. Farb, S. Friedl, A. Lubotzky, C. McMullen and B. McReynolds. The idea for this paper arose
from a conversation with W. Cavendish and R. Laverdiere. The author was supported by an NSF
Graduate Research Fellowship for part of the time during which this research was carried out. The
author is indebted to the referee for numerous helpful comments and suggestions which have greatly
improved the quality of this article.

3. Tools for analyzing nilpotent groups

In this section, we will present an account of the basic algebraic tools which we will be using.
Let G be a group. We will write

G = γ1(G) > γ2(G) > · · ·
for the lower central series of G. For i > 1, we define

γi+1(G) = [G, γi(G)] = [γ1(G), γi(G)].

Observe that a group is residually nilpotent if and only if⋂
i

γi(G) = {1}.

The following fact allows us to make algebraic the following idea: let X be a finite CW complex
and let Y1, Y2 be two finite p–power, Galois (i.e. normal) covers of X. Then there exists a p–power
refinement Z of Y1 and Y2, in the sense that Z is a Galois cover of X, Y1 and Y2, and Z has finite
p–power degree over X.

Proposition 3.1. Let G be a group, let p be a prime, and let K1,K2 < G be finite index, normal
subgroups of p–power index. Then the intersection K1∩K2 is normal and has p–power index in G.

Proof. Since K1 and K2 normalize each other, we can form the subgroup H = K1K2 which sits
between Ki and G for i = 1, 2. Notice that H is normal in G and has p–power index. The Second
Isomorphism Theorem for groups asserts that

H/K1
∼= K2/(K1 ∩K2).

The left hand side is obviously a p–group, so that K1 ∩ K2 has p–power index in K2. It follows
that K1 ∩K2 has p–power index in G. The normality of K1 ∩K2 in G is immediate. �

Observe that the assumption of normality in the previous proposition is essential. For example,
take the standard copy of A4 < A5. This subgroup has index 5, as do all of its conjugates. Their
intersection in A5 itself is trivial since A5 is simple. Therefore the index of the intersection is 60,
which is not a power of 5.
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In general, it is difficult to show that a group lacks a particular residual property. The following
is useful for us in establishing certain such facts:

Proposition 3.2. Let N be a nonabelian finitely generated nilpotent group.
(1) Suppose N has a cyclic abelianization. Then N is cyclic.
(2) Suppose N is torsion–free. Then H1(N,Q) has rank at least two.
(3) Suppose N is a finite p–group. Then H1(N,Z/pZ) has rank at least two.

Proof. For claim (1), let N1 be the abelianization of N and let N2 be the largest two–step nilpotent
quotient of N (so that N1

∼= γ1(N)/γ2(N) and N2 = γ1(N)/γ3(N)). Then N2 fits into a central
extension of the form

1→ γ2(N)/γ3(N)→ N2 → N1 → 1.
The isomorphism type of this extension is classified by its Euler class

e ∈ H2(N1, γ2(N)/γ3(N)).

Since N1 is cyclic, it admits a periodic resolution (see [6] for instance). In particular, the cohomology
group

H2(N1, γ2(N)/γ3(N))
vanishes so that the extension is trivial and N2 is abelian. Since N1 is the abelianization of N , it
follows that N2

∼= N1.
For the other two claims, we use the standard fact that for any finitely generated group the

commutator bracket furnishes a surjective map

H1(G,Z)⊗H1(G,Z)→ γ2(G)/γ3(G)

(see [17]). If the torsion–free part of the abelianization of N has rank one then the anti–symmetry
of the commutator bracket implies that γ2(N)/γ3(N) is finite. If N is torsion–free and nonabelian,
this is impossible. Similarly, if the p–part of the abelianization of N is cyclic then the antisymmetry
of the commutator bracket implies that the p–part of γ2(N)/γ3(N) is trivial. If N is a nonabelian
p–group, this is again impossible. �

Throughout this article, we will be repeatedly appealing to the fact that free groups and surface
groups are residually p for every prime. These facts are well–known, and one of the first proofs for
surfaces can be found in the paper [7] of G. Baumslag. We include another proof whose flavor is
distinctly geometric.

Proposition 3.3. Let G be a finitely generated free group or a surface group, and let p be a prime.
Then G is residually p.

Proof. First suppose that G is free. Identify G with the fundamental group of a finite wedge of
circles X, which we endow with the graph metric. We let X = X0 and we build a tower of finite
covering spaces by taking Xi+1 to be the cover of Xi corresponding to the natural surjective map

π1(Xi)→ H1(Xi,Z/pZ).

Note that Xi → X0 is a normal (in fact characteristic) covering space of p–power degree.
Let Γ be a finite graph. Let γ be a loop in Γ, which we view as a nontrivial path (without

backtracking) which has the same initial and terminal vertex. We say that γ is a simple loop in
Γ if, as an unbased loop, it visits each vertex at most once. We claim that any simple loop in Γ
represents a primitive integral homology class. To see this, let e be an edge of γ. Since γ \ e = T0 is
a tree, we can extend T0 to a maximal tree T ⊂ Γ. Collapsing T to a point, we see that the image
of e in Γ/T is a free factor of the fundamental group of Γ. In particular, the homotopy class of γ
is primitive over Z. It follows that the modulo p homology class of γ is nontrivial for each prime.

Note also that in any finite graph with the graph metric, any minimal length nontrivial loop is
always simple. It follows that any loop of length k in X0 does not lift to Xk. In particular, the
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length of the shortest loop in Xk tends to infinity as k tends to infinity. In particular, G = π1(X)
is residually p.

For closed surface groups there is an additional complication, which is that short loops may
be homologically trivial. Let G = π1(S), and we will choose a discrete, cocompact embedding
G → PSL2(R) so that S is then a quotient of the hyperbolic plane H2. Each essential free
homotopy class of curves in S is now represented by a hyperbolic geodesic. We again let S = X0

and we construct the tower of p–power covering spaces {Xi} as for graphs.
Note that with the hyperbolic metric, any shortest closed geodesic is still simple. If γ ⊂ Xi is

a shortest length closed geodesic, we record the homology class of γ. If it is nontrivial then γ is
nonseparating and hence is nontrivial and primitive in H1(Xi,Z/pZ). Otherwise, γ is separating.
It is easy to check that each lift of γ to Xi+1 is nonseparating. It follows that the shortest closed
loop on Xi does not lift to a closed loop in Xi+2. The length spectrum of geodesics in X0 is discrete,
so that as i tends to infinity, the length of the shortest loop in X0 which lifts to Xi also tends to
infinity. �

Since we are interested in residually p properties of groups and in residual torsion–free nilpotence,
it is useful to understand the relationship between these two properties. LetG be a finitely generated
group, let g ∈ G, and let P be a set of primes. We say that g ∈ G is P–good if there is an N = N(g)
such that g survives in a p–group quotient of G of nilpotence degree no more than N for each p ∈ P.

We will record the following proposition for its independent interest – it is not used in the sequel.

Proposition 3.4. Let G be a finitely generated group. The following are equivalent:
(1) G is residually torsion–free nilpotent.
(2) There is an infinite set of primes P such that each nontrivial g ∈ G is P–good.
(3) Each nontrivial g ∈ G is P–good with respect to the set of all primes.

Proof. Suppose G is residually torsion–free nilpotent, and let 1 6= g ∈ G. Let N be a torsion–free
nilpotent quotient of G where g survives. We may embed N as a group U of integral unipotent
matrices in some finite dimensional general linear group, as is proved in [22], though this fact seems
to be originally proved by P. Hall in [12]. Let p be any prime. Reducing the entries of U modulo
pn results in a finite p–group Upn whose nilpotence degree is no larger than that of N . Choosing n
sufficiently large, we see that 1 implies 3. We have that 3 implies 2 trivially.

To see that 2 implies 1, let 1 6= g ∈ G. For each p ∈ P, let Pg be a p–group in which g
survives and which has nilpotence degree at most N , where N is the nilpotence degree guaranteed
by P–goodness. Write

X =
∏
p∈P

Pg,

and let H be the image of G in X. Observe that H is finitely generated and is a subgroup of X, so
that the nilpotence degree of H is at most N . Furthermore, the image of g has infinite order in H,
since g projects nontrivially to each of the factors X. Since H is finitely generated and nilpotent,
the torsion elements of H form a normal subgroup of H (see [22]), so that there is a torsion–free
quotient H of H in which g survives. In particular, G is residually torsion–free nilpotent. �

It is well–known (see [17] for instance) that free groups and surface groups are in fact residually
torsion–free nilpotent. One can see this geometrically as in the proof of Proposition 3.3, using
certain torsion–free homology covers instead modulo p homology covers, and analyzing injectivity
radii. Some care must be taken when dealing with infinite covers and in ensuring that the resulting
covers are nilpotent and not just solvable.

The final topic we will discuss in this section is that of automorphisms of p–groups. For a group
G, write ϕ(G) for the intersection of its maximal proper subgroups. We call ϕ(G) the Frattini
subgroup of G. By convention if G has no nontrivial proper maximal subgroups, we define
ϕ(G) = {1}. The following result is standard and can be found in [16], for instance:



RESIDUAL PROPERTIES OF 3–MANIFOLD GROUPS 7

Theorem 3.5. Let P be a finite p–group. Then P/ϕ(P ) is the largest elementary abelian quotient
of P .

Here, an elementary abelian group is one which is isomorphic to (Z/pZ)n for some prime p
and some integer n. Thus, if P is a finite p–group then

P/ϕ(P ) ∼= H1(P,Z/pZ).

The most important result we will discuss here is this:

Theorem 3.6. Let P be a finite p–group and let Γ < Aut(P ) be a subgroup which acts trivially on
P/ϕ(P ). Then Γ is also a p–group.

In the interest of space, we will not give a complete proof of Theorem 3.6 here. The reader may
find a complete and detailed discussion in [10]. The reason we are interested in Theorem 3.6 is for
the following easy consequence:

Corollary 3.7. Let P be a p–group and let ψ ∈ Aut(P ) induce a unipotent automorphism of
H1(P,Z/pZ). Then ψ has p–power order.

As in the characteristic zero case, an automorphism of the vector spaceH1(P,Z/pZ) is unipotent
if its minimal polynomial is x− 1.

Proof of Corollary 3.7. Identify the automorphisms of H1(P,Z/pZ) with GLn(Fp) for an appropri-
ate n. It is well–known that every unipotent subgroup of GLn(Fp) is a p–group (see 0.8 of [10] for
instance). Thus the automophism of H1(P,Z/pZ) induced by ψ has p–power order. It follows that
ψ has p–power order as an automorphism of P by Theorem 3.6. �

4. Fibered 3–manifolds

In this section, we will analyze the case of fibered 3–manifolds.

4.1. Fibered 3–manifold groups are virtually residually p. The fact that fibered 3–manifold
groups are virtually residually p for every prime is a consequence of a somewhat more general fact.
Let G be any group and let Γ < Aut(G) be any subgroup. We can construct the semidirect product

1→ G→ GΓ → Γ→ 1,

where the conjugation action of Γ on G is given by the action of Aut(G) on G.

Theorem 4.1. Let G be a finitely generated and residually p, and let Γ < Aut(G) be a subgroup
which acts unipotently on H1(G,Z/pZ). Then GΓ is also residually p.

Proof. Suppose first that G is a finite p–group. By Corollary 3.7, every element of Γ has p–power
order, so that Γ is also a p–group. It follows that GΓ has p–power order.

For the general case, let P be a finite p–power quotient of G by a characteristic subgroup. Such
quotients always exist by a fairly straightforward application of Proposition 3.1. We then obtain
a map Γ → Aut(P ) whose image Π still acts unipotently on H1(P,Z/pZ). Again, we have that
PΠ is a p–group. By definition, G is exhausted by p–power index subgroups. It follows that GΓ is
residually p. �

The finite generation of G implies that H1(G,Z/pZ) is a finite group. The following statement
is an immediate consequence of Theorem 4.1.

Corollary 4.2. Let G be a finitely generated and residually p, and let Γ < Aut(G) be any subgroup.
Then GΓ is virtually residually p.

Theorem 1.2 follows immediately, replacing the general subgroup Γ < Aut(π1(S)) by the single
automorphism of π1(S) given by a lift of the action of the mapping class ψ.
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4.2. Sol geometry. Any compact 3–manifold which admits Sol geometry is finitely covered by a
torus bundle over the circle with hyperbolic monodromy. Thus for virtually residually p consider-
ations, it suffices to consider the case of a torus bundle with hyperbolic monodromy. Recall the
statement of Theorem 1.3: let TA be a hyperbolic torus bundle with monodromy A ∈ SL2(Z).
Then π1(TA) is residually p if and only if p | det(A − I), and π1(TA) is not residually p for any
prime if and only if π1(TA) is not residually nilpotent, if and only if A is Q–conjugate to(

2 1
1 1

)
.

Proof of Theorem 1.3. We first consider the case of the Q–conjugacy class of

A =
(

2 1
1 1

)
.

If Q is any invertible, rational 2× 2 matrix, we have that

QAQ−1 − I = Q(A− I)Q−1.

Observe that A − I is an element of GL2(Z), so that the determinant of QAQ−1 − I is a unit in
Z. Thus, if B ∈ SL2(Z) is in the rational conjugacy class of A then B − I ∈ GL2(Z). Let us now
compute the lower central series of G = π1(TB). We will use the presentation

G = 〈Z2, t | t−1Z2t = B(Z2)〉.
Observe that

[t,Z2] = (B − I)Z2 = Z2,

so that we have
G = γ1(G) > γ2(G) = γ3(G) = · · · = Z2.

In particular, the lower central series stabilizes at the second term. It follows that G is not residually
nilpotent and is therefore not residually p for any prime.

Now let A ∈ SL2(Z) be a general hyperbolic element. One easily checks that A has two real
eigenvalues λ±1 with |λ| 6= 1. It follows that det(A− I) 6= 0. For our analysis, it is convenient for
us to pass to

PSL2(Z) ∼= SL2(Z)/{±I}.
Write n for the trace of A, and A for the image of A in PSL2(Z). We can include PSL2(Z) ⊂
PSL2(R) ∼= Isom+(H2). From this perspective, we have that the R–conjugacy class of A is deter-
mined by the absolute value of its trace |n|.

If A has trace |n| then it is R–conjugate to

X =
(
|n| − 1 1
|n| − 2 1

)
,

where this matrix is well–defined in SL2(Z) up to −I. So, there exists an element Q ∈ PSL2(R)
such that QA = XQ in PSL2(R). Finding entries for such a matrix Q is tantamount to solving a
system of linear equations with integer entries. By Cramer’s rule the solutions are rational, so we
may assume Q has rational entries. The system of equations to be solved is underdetermined, so
fix a particular element Q ∈ PSL2(Q) realizing the conjugacy. We will abuse notation and think of
Q as an element of SL2(Q), as a choice of lift does not affect conjugation. Since X is well–defined
in SL2(Z) up to −I, we have that A is conjugate to either

X =
(
|n| − 1 1
|n| − 2 1

)
or to

−X =
(
−|n|+ 1 −1
−|n|+ 2 −1

)
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in SL2(Q). Now let Y ± = ±X − I. We have that A− I is conjugate to Y ± in SL2(Q) by Q.
One verifies that

(Y +)2 =
(

(|n| − 2)2 + |n| − 2 |n| − 2
(|n| − 2)2 |n| − 2

)
and that

(Y −)2 =
(

(|n|+ 2)(|n| − 1) (|n|+ 2)(|n| − 2)
|n|+ 2 |n|+ 2

)
In particular, each entry of (Y +)k is divisible by |n| − 2 and each entry of (Y −)k is divisible by
|n| + 2 whenever k ≥ 2. It follows that the matrices Y ± are nilpotent modulo some prime when
|n| 6= 3 (since we exclude the case |n| ≤ 2 by hyperbolicity). Observe that only Y + can fail to be
nilpotent modulo some prime, and from the discussion above we see that this can only happen if
A is conjugate to (

2 1
1 1

)
in SL2(Q).

Suppose A− I is conjugate to Y +. Notice that for any M , there is a k = k(M) such that

(Y +)k = (|n| − 2)M · C,

where C ∈ PSL2(Z). If p is a prime dividing |n| − 2, we have that

(Y +)k ≡
(

0 0
0 0

)
(mod pM ).

Since Q has fixed, rational entries, it follows that for some possibly larger K ≥ k, we have that

(A− I)K ≡
(

0 0
0 0

)
(mod pM ).

The same argument applies when A− I is conjugate to Y −, replacing p by a prime dividing |n|+ 2.
It follows that A acts unipotently on Z2 modulo these primes and consequently that π1(TA) is
residually p by Theorem 4.1.

If q is a prime which does not divide |n| − 2, then the determinant of Y + is a unit modulo q.
Similarly, if q does not divide |n| + 2 then the determinant of Y − is a unit modulo q. It follows
that when we abelianize π1(TA), we obtain

H1(TA,Z) ∼= Z⊕ F,

where q does not divide the order of F . In particular,

H1(TA,Z/qZ) ∼= Z/qZ.

By Proposition 3.2, one sees that π1(TA) cannot be residually q.
Finally, observe that if A ∈ SL2(Z) then det(A− I) = − tr(A) + 2. If n = tr(A) is positive, then

det(A − I) = −(n − 2) = −(|n| − 2). If n is negative then det(A − I) = |n| + 2. It follows that
π1(TA) is residually p exactly when p divides det(A− I). �

We remark that Aschenbrenner and Friedl obtained a characterization of residually p fundamental
groups of Sol manifolds in [4]. One can check that their result is equivalent to ours.
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4.3. Unipotent homology actions and residual torsion–free nilpotence. In this subsection,
we would like to prove Theorem 1.6, namely that if ψ ∈ Mod(S) acts unipotently on H1(S,Z) then
π1(Tψ) is residually torsion–free nilpotent. Much like Theorem 1.2, Theorem 1.6 will follow from a
more general fact:

Theorem 4.3. Let G be a finitely generated, residually torsion–free nilpotent group and let Γ <
Aut(G) be a subgroup acting unipotently on H1(G,Z). Then GΓ is residually torsion–free nilpotent.

Proof. Let {γi(G)} denote the lower central series of G as usual. We will assume that the succes-
sive quotients γi(G)/γi+1(G) are all torsion–free. In general this is not true, but one can define
an appropriate “torsion–free lower central series” which is a filtration of G by characteristic sub-
groups that are commensurable with the lower central series in an appropriate sense, and for which
successive quotients are all torsion–free. See [14] for more details.

It is a standard fact that the commutator furnishes a surjective map

H1(G,Z)⊗ γi(G)/γi+1(G)→ γi+1(G)/γi+2(G).

By induction, it follows that if Γ acts unipotently onH1(G,Z) then it acts unipotently on γi(G)/γi+1(G)
for all i.

Since γi(G) is characteristic in G, we may consider the action of Γ on G/γi(G), thus getting a
map

Γ→ Γi < Aut(G/γi(G)).
Let Ni = (G/γi(G))Γi be the associated semidirect product. Evidently, the kernels of the maps

GΓ → Ni

exhaust all of GΓ. By the assumption that γi(G)/γi+1(G) is torsion–free for each i, we have that
each Ni is torsion–free. It suffices to show that Ni is nilpotent for each i.

First of all, Γ2 is nilpotent since it is a unipotent subgroup of a finite dimensional general
linear group. Observe that we obtain a conjugation action of Ni on γi(G)/γi+1(G). This action is
unipotent, since G/γi(G) acts trivially on γi−1(G)/γi(G) and Γi acts unipotently on γi−1(G)/γi(G).
It follows that there is a primitive fixed vector in γi−1(G)/γi(G) under the action of Ni, say v. It
follows that the center of Ni is nontrivial. We see that Ni still acts unipotently on

(γi−1(G)/γi(G))/〈v〉,
so that Ni/〈v〉 still has a nontrivial, infinite order center. By induction, it follows easily that Ni

admits a filtration of the form
1 < Z1 < Z2 < · · ·Zn = Ni,

where for each j ≤ n we have Zj/Zj−1 is central in Zn/Zj−1. Thus, Ni is nilpotent. �

4.4. Two examples. One is naturally led to wonder whether there are examples of fibered 3–
manifolds which are not virtually residually nilpotent. Hyperbolic torus bundles provide such
examples, since the fundamental group of any such bundle is residually p for at most finitely many
primes. Proposition 3.4 shows that residually torsion–free nilpotent groups are residually p at every
prime. One can provide another proof:

Proposition 4.4. The fundamental group of a hyperbolic torus bundle TA is not virtually residually
torsion–free nilpotent.

Proof. One can easily show that if T ′ → TA is a finite cover then H1(T ′,Z) ∼= Z ⊕ F , where F is
a finite abelian group. So, the abelianization of any torsion–free nilpotent quotient of π1(T ′) has
rank at most one. By Proposition 3.2, we have that any torsion–free nilpotent quotient of π1(T ′)
is cyclic. Thus, π1(T ′) is not residually torsion–free nilpotent. �

The following example is also worth noting:
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Proposition 4.5. Let K be any knot. Then π1(S3 \ K) is not residually p for any prime. In
particular, π1(S3 \K) is not residually torsion–free nilpotent.

Proof. This also follows from Proposition 3.2, since H1(S3 \K,Z) ∼= Z. �

5. Hyperbolic manifolds and actions on trees

In this section, we will reduce our study of general finite volume hyperbolic 3–manifolds to that of
fibered 3–manifolds. Let M be a finite volume hyperbolic 3–manifold and let Γ be its fundamental
group. By a result due to Thurston, the representation

Γ→ PSL2(C)

specifying the hyperbolic structure on M lifts to SL2(C) (cf. [8]). Let R = R(Γ) denote the SL2(C)
representation variety of Γ. It is a standard fact from algebraic geometry that R contains a point
over Q and in fact a faithful representation Γ → SL2(Q). Since Γ is finitely generated, there is
a finite extension K/Q such that the image of Γ lands in SL2(K). We let O denote the ring of
integers in K. Any entry of an element in the image of Γ can be written as a/b, where a, b ∈ O and
b 6= 0 is either equal to 1 or is not a unit. Fixing a finite generating set for Γ, there are only finitely
many denominators occurring in the image of the generating set in SL2(K). These denominators
will be contained in finitely many maximal ideals in O. Each maximal ideal of O lies over a unique
nonzero prime ideal pZ of Z.

For each prime ideal P ⊂ O, we can complete O at P to get a DVR. We will denote this
completion by ÔP . A nonzero prime ideal pZ ⊂ Z is called bad prime ideal for the representation

Γ→ SL2(K)

if there is no prime ideal P ⊂ O lying over pZ such that the image of Γ is conjugate into a subgroup
of SL2(ÔP ) upon completing. Write B for the set of primes {p ∈ Z} such that pZ is a bad prime
ideal. We call B the set of bad primes.

The following observation of Mal’cev was pointed out to the author by the referee:

Lemma 5.1. Let R be a Noetherian local ring and let m ⊂ R be a maximal ideal such that R/m
is finite of characteristic p. Then for all n, the group GLn(R) is virtually residually p.

Proof. For each i ≥ 1, write Gi for the kernel of the natural homomorphism

GLn(R)→ GLn(R/mi).

The ring R/mi is finite and has p–power order, so that Gi has finite index in G for each i. Fur-
thermore, ⋂

i

Gi = {1}

since ⋂
i

mi = {0}

by the Krull Intersection Theorem.
We claim that for i ≥ 1, the quotients Gi/Gi+1 are all p–groups. Write A ∈ Gi as I +B, where

B has all entries in mi. Then Ap − I = (I +B)p − I is a sum of p matrices whose entries are all in
mi+1, by the Binomial Theorem. It follows that Ap − I is a matrix whose entries are all in mi+1,
so that Ap ∈ Gi+1. �

We immediately obtain the following:

Lemma 5.2. Suppose that Γ is the fundamental group of a finite volume hyperbolic 3–manifold,
and that its set of bad primes B is empty. Then for each prime p, we have that Γ is virtually
residually p.
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Now suppose that B 6= ∅. Standard theory of group actions on trees implies that Γ acts on a
tree with no global fixed point and without inversions. We recall the basics of this theory for the
convenience of the reader, following [23]. Fix p ∈ B and a prime ideal P ⊂ O lying over pZ, and let
Ô = ÔP . We let K̂ be the fraction field of Ô. We have a canonical map O → Ô which is injective
since ⋂

n

Pn = 0,

since O is a Dedekind domain. Thus we obtain an injective map K → K̂, and a faithful represen-
tation Γ→ SL2(K̂) induced by the inclusion SL2(K)→ SL2(K̂).

By construction, the field K̂ comes equipped with a discrete valuation ν. Explicitly, it takes
an equivalence class of fractions γ = α/β, determines an i and j such that α ∈ Pi \ P i+1 and
β ∈ P j \ P j+1 and sets ν(γ) = i− j. The valuation ν thus defined is a discrete valuation, so that
Ô is a DVR. We write P̂ for the unique maximal ideal in Ô.

Let V be a two–dimensional vector space over K̂. Recall that at Ô–lattice in V is a rank two
Ô–module which spans V as a K̂–vector space. Let L be a Ô–lattice and L′ a sublattice. Then
L/L′ is isomorphic to Ô/P̂ a ⊕ Ô/P̂ b for some nonnegative integers a and b. There is a natural
action of K̂ on the set of Ô–lattices in V , given by scalar multiplication.

Note that if L and L′ are arbitrary lattices, we can find a k ∈ K̂ such that kL′ ⊂ L. We will say
that two lattices are equivalent if they are in the same K̂–multiplication orbit. There is a natural
graph whose vertices are equivalence classes of lattices, and whose edges span pairs of equivalence
classes for which there exist representatives satisfying L/L′ ∼= Ô/P̂ . It is shown in [23] that this
graph is a tree, called the lattice tree of Ô. We have that SL2(K̂) acts on this tree via its action
on K̂2. The stabilizers of vertices are the conjugates of SL2(Ô) in SL2(K̂).

The following is immediate:

Lemma 5.3. Let Γ be as above and let P ⊂ O lie over a bad prime ideal pZ. Then Γ acts on the
lattice tree of Ô without a global fixed point.

The action in Proposition 5.3 gives rise to a nontrivial splitting of Γ. The final ingredient we
need is the following, which is due to Epstein, Stallings and Waldhausen, and a proof can be found
in [8]:

Lemma 5.4. Let M be a compact, orientable 3–manifold. For any nontrivial splitting of π1(M)
there exists a nonempty system S of incompressible, non–peripheral surfaces such that the image of
the inclusion on fundamental groups is contained in an edge group. Furthermore, the image of the
fundamental groups of the components of M \ S are contained in a vertex group.

Combining Lemmas 5.2, 5.3 and 5.4, we obtain the following:

Theorem 5.5. Let Γ = π1(M) of a finite volume hyperbolic 3–manifold which is not Haken. Then
for each prime p, the group Γ is virtually residually p.

We obtain Theorem 1.7 by combining the previous result with Theorem 1.2. We briefly remark
that a finitely generated linear group is virtually residually p for all but finitely many primes.
One can fairly easily produce examples of finitely generated linear groups which are not virtually
residually p for some particular prime, and in fact for any finite collection of primes (see [28]).
As noted in the introduction, Lubotzky asked the author whether hyperbolic 3–manifold groups
are virtually residually p for every prime, and his question was part of the motivation for this
article. The recent resolution of the virtual Haken conjecture in [2] implies among other things
that hyperbolic 3–manifold groups are linear over Z and are therefore virtually residually p for
every prime.
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6. Circle bundles over surfaces

In this section, we consider 3–manifolds which are finitely covered by circle bundles over orientable
surfaces. Such a manifold M fits into a fibration sequence of the form

S1 →M → S,

where S is an orientable surface. Passing to a finite cover of M if necessary, we have that π1(M)
fits into a (not necessarily split) short exact sequence of the form

1→ Z→ π1(M)→ π1(S)→ 1,

where the left copy of Z is central in π1(M). As is standard from cohomology of groups (see [6], for
instance), the isomorphism type of π1(M) is determined by the Euler class of the extension, which
is an element e ∈ H2(S,Z). When the copy of Z is central in π1(M), we will say that the bundle
has trivial monodromy.

Theorem 6.1. Let M be a circle bundle over an orientable surface S with trivial monodromy.
Then there is an injective homomorphism

π1(M)→ π1(S)×H,

where H is a finitely generated, torsion–free nilpotent group. In particular, any circle bundle over
a surface has a virtually residually torsion–free nilpotent fundamental group.

Proof. Let e ∈ H2(S,Z) be the Euler class of the extension. If e = 0 then the extension is split, so
that π1(M) ∼= π1(S)× Z. Setting H = Z, we obtain the desired result.

Now suppose that e 6= 0. Write p1 for the map π1(M) → π1(S) induced by the fibration. We
may assume that S is closed of genus g, for otherwise H2(S,Z) = 0. There is a natural map
π1(S)→ Z2g given by the abelianization map. We obtain a map

H2(Z2g,Z)→ H2(S,Z)

induced by the abelianization. It is a standard fact that this map is surjective (see Griffiths and
Harris’ book [11], for instance). Thus we can choose a non–split central extension

1→ Z→ H → Z2g → 1

whose Euler class is in the preimage of e under the map

H2(Z2g,Z)→ H2(S,Z).

It follows that H is a torsion–free nilpotent quotient of π1(M) and that the central copy of Z <
π1(M) maps injectively into H. Write p2 for the surjection from π1(M) to H.

Thus, we see that each element of π1(M) can be written as g = x · z, where x is a preimage of
an element of π1(S) in π1(M) under p1, and where z is an element of the central copy of Z. Define
a map

ι : π1(M)→ π1(S)×H
by p1× p2. If g maps to a nontrivial element of π1(S) under p1 then ι(g) 6= 1. If 1 6= g maps to the
identity in π1(S) then g is central in π1(M) and hence maps to a nontrivial element of H under p2.
It follows that ι is injective. �

Recall that Corollary 1.5 asserts that if M is modeled on ˜PSL2(R) geometry then π1(M) is
linear over Z. This is now more or less immediate by combining the proof of the previous result
together with Z–linearity of surface groups (see [18], for instance) and the fact that finite induction
of Z–linear representations gives Z–linear representations.
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7. Establishing Theorem 1.1

In this section, we will show how to deduce Theorem 1.1 from the other results proved in this
paper combined with some other tools.

Proof of Theorem 1.1. The establishment of both residual properties for the first four geometries
is trivial, since in those cases the fundamental groups are all either finite, virtually torsion–free
abelian, or virtually torsion–free nilpotent.

Sol geometry: this is the content of Theorem 1.3 and the example immediately after its proof.
H2 × R geometry and ˜PSL2(R) geometry: this is the content of Theorem 1.4.
H3 geometry: let M be a finite volume hyperbolic 3–manifold, and let p be a prime. The

resolution of the virtual fibering conjecture shows that every virtually Haken hyperbolic 3–manifold
is virtually fibered. By Theorem 1.7, we see that π1(M) is virtually residually p. Virtual residual
torsion–free nilpotence of π1(M) follows from [2]. Indeed, the authors prove that π1(M) virtually
embeds in a residually torsion–free nilpotent group (in particular a right-angled Artin group). �
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