Resiliency in Cyber-physical Systems for Robot-assisted Surgery

Homa Alemzadeh
Department of Electrical and Computer Engineering

In collaboration with:
Prof. R. Iyer, Dr. Z. Kalbarczyk, D. Chen (ECE, UIUC)
Prof. Kesavadas (HCESC) and X. Li (MechE, UIUC)
Prof. J. Raman (Heart Surgery, RUSH University Medical Center)
Safety Incidents in Robotic Surgery

• More than 1.75 million robotic procedures since 2000
• Various surgical specialties:
 – Gynecology, Urology, General, Cardiothoracic, Head and Neck

©2015 Intuitive Surgical, Inc.
Safety Incidents in Robotic Surgery

- Over 10,600 adverse events reported to the FDA
 - On average, one adverse event per 100 procedures
 - When an adverse event happens, there is a 24% risk of:
 - Injuries and deaths
 - Longer procedure times for troubleshooting problems
 - Conversion to non-robotic methods
 - Rescheduling

Safety Challenges

• Accidents are under-reported and not well studied
 – Causal analysis of accidents by considering humans in the loop
 – Improved error logging and monitoring mechanisms

• Monitoring and recovery mechanisms are passive
 – Assessing system resiliency against safety hazards
 – Considering HW/SW interactions, physical system, and human operators interactions

• Surgical teams are not well trained for dealing with adverse events
 – Simulation-based training by creating safety hazard scenarios in virtual environments
Our Research

Analyzing Past Failures and Safety Incidents

- Tools for automated analysis of incident reports
- Systems-theoretic accident models and hazard analysis

Assessing Resilience to Safety Hazards

- Software fault-injection to emulate realistic failures
- Simulators to virtually recreate hazard scenarios

Resilient Robotic Surgical Systems

Designing Resilient Surgical Systems & Simulators for Training

- Safety monitors for early detection/mitigation of safety hazards
- Training modules to expose surgeons to realistic hazard scenarios
Surgical Simulator
Safety Assessment and Training

Raven II Surgical System

User Inputs:
- Position
- Orientation
- Foot pedal

Robotic Control
Software and Hardware

Motor control commands

Motor encoder feedback

Instruments

Robotic Arms

DC Motors

Console Output
Surgical Simulator
Safety Assessment and Training

User Inputs:
- Position
- Orientation
- Foot pedal

Raven II Surgical System

Control Software Modules
- Network Thread
- Control Thread
- Console Thread

Control Hardware
- PLC Safety Processor
- Interface Boards
- Motor Controllers

Console Output
Surgical Simulator
Safety Assessment and Training

Haptic Device

User Inputs:
- Position
- Orientation
- Foot pedal

Pre-collected Trajectories

Network Thread
Control Thread
Console Thread

Control Software Modules

Simulated Tool-Tissue Dynamics
Simulated Mechanical Models
3D Visualization Software

Joint positions

Raven II Surgical Simulator

Console output
Graphics output

Virtual Environment
Simulation of Safety Hazards

Safety Assessment

Safety Training
Future Directions

Analyzing Past Failures and Safety Incidents
- Tools for automated analysis of incident reports
- Systems-theoretic accident models and hazard analysis

Assessing Resilience to Safety Hazards
- Software fault-injection to emulate realistic failures
- Simulators to virtually recreate hazard scenarios

Designing Resilient Surgical Systems & Simulators for Training
- Safety monitors for early detection/mitigation of safety hazards
- Training modules to expose surgeons to realistic hazard scenarios