finite temperature phase diagram of a polarized fermion condensate

Austen Lamacraft
University of Oxford
Birmingham, May 2006

Collaborators: F. Marchetti, M. Parish, B. Simons (Cambridge)
1 Outline

- The two component fermi gas
 \(\sim \) BCS and BEC limits

- The effect of ‘magnetization’
 \(\sim \) What happens when \(N_\uparrow \neq N_\downarrow \)?

- The finite temperature phase diagram
 \(\sim \) and a surprise
1 Outline

- The two component fermi gas
 \[\sim \text{BCS and BEC limits} \]

- The effect of ‘magnetization’
 \[\sim \text{What happens when } N^\uparrow \neq N^\downarrow? \]

- The finite temperature phase diagram
 \[\ldots \text{ and a surprise} \]
1 Outline

- The two component fermi gas
 \(\sim \) BCS and BEC limits

- The effect of ‘magnetization’
 \(\sim \) What happens when \(N_\uparrow \neq N_\downarrow \)?

- The finite temperature phase diagram
 ... and a surprise
A brief history of condensates
2 A brief history of condensates

- 1925 Einstein points out BEC phenomenon
 - ... [4He, superconductivity, neutron stars, 3He, diquark condensates...]

- 1995 BEC realized in trapped atomic gases

- 2004 Fermion condensates in 6Li, 40K
2 A brief history of condensates

- 1925 Einstein points out BEC phenomenon
 \[\ldots [^4\text{He}, \text{superconductivity}, \text{neutron stars}, \, ^3\text{He}, \text{diquark condensates}]\]

- 1995 BEC realized in trapped atomic gases

- 2004 Fermion condensates in \(^6\text{Li}, \, ^{40}\text{K}\)
2 A brief history of condensates

- 1925 Einstein points out BEC phenomenon
 - 4He, superconductivity, neutron stars, 3He, diquark condensates...

- 1995 BEC realized in trapped atomic gases

- 2004 Fermion condensates in 6Li, 40K
3 BEC: a reminder
3 BEC: a reminder

\[\sum_k \frac{1}{e^{\beta(\epsilon_k - \mu)} - 1} = N \]
3 BEC: a reminder

\[\sum_k \frac{1}{e^{\beta(\epsilon_k - \mu)} - 1} = N \]

\[T_c = \alpha \frac{\hbar^2}{mk} n^{2/3} \quad \text{with} \quad \alpha \equiv \frac{2\pi}{[\zeta(3/2)]^{2/3}} \]
3 BEC: a reminder

\[\sum_k \frac{1}{e^{\beta(\epsilon_k - \mu)} - 1} = N \]

\[T_c = \alpha \frac{\hbar^2}{mk} n^{2/3} \]

\[\alpha \equiv \frac{2\pi}{\zeta(3/2)^{2/3}} \]

deBroglie wavelength \(\lambda_{dB} \equiv \left(\frac{2\pi\hbar^2}{mkT} \right)^{1/2} \sim n^{-1/3} \)
3 BEC: a reminder

\[
\sum_k \frac{1}{e^{\beta(\epsilon_k - \mu)} - 1} = N
\]

\[
T_c = \alpha \frac{\hbar^2}{mk} n^{2/3}
\]

\[
\alpha \equiv \frac{2\pi}{[\zeta(3/2)]^{2/3}}
\]

deBroglie wavelength \(\lambda_{dB} \equiv \left(\frac{2\pi\hbar^2}{mkT} \right)^{1/2} \sim n^{-1/3} \)

For \(T < T_{\text{BEC}} \)

\[
\frac{N_0}{N} = \left(1 - \frac{T}{T_{\text{BEC}}} \right)^{3/2}
\]
3 BEC: a reminder

\[\sum_k \frac{1}{e^{\beta(\epsilon_k - \mu)} - 1} = N \]

\[T_c = \alpha \frac{\hbar^2}{mk} n^{2/3} \]

\[\alpha \equiv \frac{2\pi}{\zeta(3/2)^{2/3}} \]

deBroglie wavelength \(\lambda_{dB} \equiv \left(\frac{2\pi\hbar^2}{mkT} \right)^{1/2} \sim n^{-1/3} \)

For \(T < T_{\text{BEC}} \)
4 Fermion condensates?

Same condition \(\lambda_{dB}^3 n \sim 1 \) gives degenerate fermi system

\[
\lambda_{dB} \sim \lambda_F, \text{ or } T \sim T_F \equiv \frac{p_F^2}{2m}, \quad p_F = \frac{\hbar}{\lambda_F}
\]
4 Fermion condensates?

Same condition $\lambda_{dB}^3 n \sim 1$ gives degenerate fermi system

$$\lambda_{dB} \sim \lambda_F, \text{ or } T \sim T_F \equiv p_F^2 / 2m, \ p_F = \hbar / \lambda_F$$

Can fermions condense?
4 Fermion condensates?

Same condition $\lambda_{dB}^3 n \sim 1$ gives degenerate fermi system

$$\lambda_{dB} \sim \lambda_F, \text{ or } T \sim T_F \equiv \frac{p_F^2}{2m}, \; p_F = \hbar / \lambda_F$$

Can fermions condense?

YES. All bosonic matter is composed of fermions!
4 Fermion condensates?

Same condition $\lambda_{dB}^3 n \sim 1$ gives degenerate fermi system

$$\lambda_{dB} \sim \lambda_F, \text{ or } T \sim T_F \equiv p_F^2/2m, \quad p_F = \hbar/\lambda_F$$

Can fermions condense?

YES. All bosonic matter is composed of fermions!

Canonical problem: two component fermi system \uparrow, \downarrow
4 Fermion condensates?

Same condition $\lambda_{dB}^3 n \sim 1$ gives degenerate fermi system

$$\lambda_{dB} \sim \lambda_F, \text{ or } T \sim T_F \equiv \frac{p_F^2}{2m}, \quad p_F = \frac{\hbar}{\lambda_F}$$

Can fermions condense?

YES. All bosonic matter is composed of fermions!

Canonical problem: two component fermi system \uparrow, \downarrow

Two fermions \sim boson
T_{BEC}

BEC of molecules (superfluid)

2nd order

Bound state forms

"Cooper pairs"

Strong attraction

Weak attraction

T
5 The BCS-BEC crossover
5 The BCS-BEC crossover

(a) BEC superfluidity of bound molecules
(b) BCS - BEC crossover
(c) BCS superfluidity of Cooper pairs
5 The BCS-BEC crossover

(a) BEC superfluidity of bound molecules
(b) BCS - BEC crossover
(c) BCS superfluidity of Cooper pairs

Diagram showing the transition between BEC and BCS regimes.
6 Theoretical description

\[H = \int d^3 x \left[\sum_s \psi^\dagger_s \left(-\nabla^2/2m - \mu\right) \psi_s + g\psi^\dagger_\uparrow \psi^\dagger_\downarrow \psi_\downarrow \psi_\uparrow \right] \]
6 Theoretical description

\[H = \int d^3x \left[\sum_s \psi_s^\dagger \left(-\nabla^2/2m - \mu \right) \psi_s + g\psi^\dagger_\uparrow \psi^\dagger_\downarrow \psi_\downarrow \psi_\uparrow \right] \]

\[|\text{BCS}\rangle = \prod_\mathbf{k} \left(u_\mathbf{k} + v_\mathbf{k}a^\dagger_{\uparrow \mathbf{k}}a^\dagger_{\downarrow -\mathbf{k}} \right) |0\rangle \]
6 Theoretical description

\[
H = \int d^3x \left[\sum_s \psi_s^\dagger \left(-\nabla^2 / 2m - \mu \right) \psi_s + g\psi_\uparrow^\dagger \psi_\downarrow^\dagger \psi_\downarrow \psi_\uparrow \right]
\]

\[
|\text{BCS}\rangle = \prod_k \left(u_k + v_k a_k^\dagger a_{-k}^\dagger \right) |0\rangle
\]

\[
|\text{BCS}\rangle_{2N} = \mathcal{A} \prod_{i=1}^N \varphi \left(a_i - b_i \right) \quad \varphi(k) = \frac{v_k}{u_k}
\]
6 Theoretical description

\[H = \int d^3x \left[\sum_s \psi_s^\dagger \left(-\nabla^2 / 2m - \mu \right) \psi_s + g \psi^\dagger \psi \psi^\dagger \psi \right] \]

\[|BCS\rangle = \prod_k \left(u_k + v_k a^\dagger_k a^\dagger_{-k} \right) |0\rangle \]

\[|BCS\rangle_{2N} = A \prod_{i=1}^N \varphi (a_i - b_i) \quad \varphi (k) = \frac{v_k}{u_k} \]

Pairing for any \(g < 0 \) (attraction)

\[\frac{m}{4\pi a_s} = \frac{1}{g} + \int \frac{d^3p}{(2\pi)^3} \frac{m}{p^2} \]
6 Theoretical description

\[H = \int d^3x \left[\sum_s \psi_s^\dagger \left(-\nabla^2/2m - \mu \right) \psi_s + g\psi_s^\dagger \psi_u^\dagger \psi_d \psi_u \right] \]

\[|\text{BCS}\rangle = \prod_k \left(u_k + v_k a_{\uparrow k}^\dagger a_{\downarrow -k}^\dagger \right) |0\rangle \]

\[|\text{BCS}\rangle_{2N} = \mathcal{A} \prod_{i=1}^N \varphi (a_i - b_i) \quad \varphi(k) = \frac{v_k}{u_k} \]

Pairing for any \(g < 0 \) (attraction)

\[\frac{m}{4\pi a_s} = \frac{1}{g} + \int \frac{d^3p}{(2\pi)^3} \frac{m}{p^2} \]

\(1/k_F a \) is dimensionless parameter. \(\rightarrow -\infty \) (BCS); \(\rightarrow \infty \) (BEC)
7 Cooper pairing \((T = 0)\)
Cooper pairing ($T = 0$)

Minimize variational energy
Minimize variational energy

\[\Delta = g \langle \psi_\downarrow \psi_\uparrow \rangle_\Delta \]

\[= g \int \frac{d^3 p}{(2\pi)^3} \frac{\Delta}{2\sqrt{\xi_p + |\Delta|^2}}, \quad \xi_p = \frac{p^2}{2m} - \mu \]
7 Cooper pairing \((T = 0)\)

Minimize variational energy

\[
\Delta = g \langle \psi_\downarrow \psi_\uparrow \rangle \Delta \\
= g \int \frac{d^3 p}{(2\pi)^3} \frac{\Delta}{2 \sqrt{\xi_p + |\Delta|^2}}, \quad \xi_p = \frac{p^2}{2m} - \mu
\]

▷ BCS limit \((1/k_F a \to -\infty)\)

\[
\Delta_{\text{BCS}} \propto E_F e^{-\pi/2|k_F a|}
\]
7 Cooper pairing \((T = 0)\)

Minimize variational energy

\[
\Delta = g \langle \psi \downarrow \psi \uparrow \rangle \Delta \\
= g \int \frac{d^3\mathbf{p}}{(2\pi)^3} \frac{\Delta}{2\sqrt{\xi_p + |\Delta|^2}}, \quad \xi_p = \frac{p^2}{2m} - \mu
\]

▷ BCS limit \((1/k_F a \to -\infty)\)

\[
\Delta_{\text{BCS}} \propto E_F e^{-\pi/2|k_F a|}
\]

▷ BEC limit \((1/k_F a \to \infty)\)

\[
\mu = -\frac{E_b}{2} = 1/2ma^2 \gg \Delta \sim \text{Schrödinger for pairs.}
\]

\(\sim \varphi(r)\) is bound state wavefn.
What happens if $N_{\uparrow} > N_{\downarrow}$?
8 What happens if $N_\uparrow > N_\downarrow$?

[no traps, just the S/N phase boundary]
8 What happens if $N_\uparrow > N_\downarrow$?

[no traps, just the S/N phase boundary]

The Cooper instability is **fragile**!
8 What happens if $N_{\uparrow} > N_{\downarrow}$?

[no traps, just the S/N phase boundary]

The Cooper instability is **fragile**!

$$M = N_{\uparrow} - N_{\downarrow}$$

‘magnetization’
What happens if $N_{\uparrow} > N_{\downarrow}$?

[no traps, just the S/N phase boundary]

The Cooper instability is fragile!

$$M = N_{\uparrow} - N_{\downarrow}$$

‘magnetization’

Introduce conjugate h ‘magnetic field’

$$H_{\mu,h} = H - \mu N - hM$$
8 What happens if \(N_{\uparrow} > N_{\downarrow} \)?

[no traps, just the S/N phase boundary]

The Cooper instability is fragile!

\[M = N_{\uparrow} - N_{\downarrow} \]

‘magnetization’

Introduce conjugate \(h \) ‘magnetic field’

\[H_{\mu,h} = H - \mu N - hM \]

Bear in mind we are interested in fixed \(M \), not \(h \)!
9 Quasiparticles
9 Quasiparticles

Tree-level effective potential

\[
\frac{S^{(0)}[\Delta_0]}{\beta V} = \frac{1}{g} |\Delta_0|^2 - T \int \frac{d^3p}{(2\pi)^3} \sum_{s=\pm} \ln \cosh \left[\frac{E_p - \text{sh}}{2T} \right]
\]

\[
E_p = \sqrt{\xi_p^2 + |\Delta_0|^2}.
\]
9 Quasiparticles

Tree-level effective potential

$$\frac{S^{(0)}[\Delta_0]}{\beta V} = \frac{1}{g} |\Delta_0|^2 - T \int \frac{d^3 p}{(2\pi)^3} \sum_{s=\pm} \ln \cosh \left[\frac{E_p - sh}{2T} \right]$$

$$E_p = \sqrt{\xi_p^2 + |\Delta_0|^2}.$$

Free energy of \((p, s)\) fermionic quasiparticles with

$$E_{p,s} = E_p - sh$$

Interpretation simple in BEC limit
9 Quasiparticles

Tree-level effective potential

\[
\frac{S^{(0)}[\Delta_0]}{\beta V} = \frac{1}{g} |\Delta_0|^2 - T \int \frac{d^3p}{(2\pi)^3} \sum_{s=\pm} \ln \cosh \left[\frac{E_p - sh}{2T} \right]
\]

\[E_p = \sqrt{\xi_p^2 + |\Delta_0|^2}.
\]

Free energy of \((p, s)\) fermionic quasiparticles with

\[E_{p,s} = E_p - sh\]

Interpretation simple in BEC limit
9 Quasiparticles

Tree-level effective potential

\[
\frac{S^{(0)}[\Delta_0]}{\beta V} = \frac{1}{g} |\Delta_0|^2 - T \int \frac{d^3 p}{(2\pi)^3} \sum_{s=\pm} \ln \cosh \left[\frac{E_p - sh}{2T} \right]
\]

\[E_p = \sqrt{\xi_p^2 + |\Delta_0|^2}.\]

Free energy of \((p, s)\) fermionic quasiparticles with

\[E_{p,s} = E_p - sh\]

Interpretation simple in BEC limit
10 Sarma state and 1st order transition

At $T = 0$ no qp's if $h < E_g \equiv \min_p E_p$
10 Sarma state and 1st order transition

At $T = 0$ no qp’s if $h < E_g \equiv \min_p E_p$
10 Sarma state and 1st order transition

At $T = 0$ no qp’s if $h < E_g \equiv \min_p E_p$

BCS limit: $E_g = \Delta$
10 Sarma state and 1st order transition

At $T = 0$ no qp’s if $h < E_g \equiv \min_p E_p$

BCS limit: $E_g = \Delta$

Everything scales with Δ
\[F(\Delta) = \alpha |\Delta|^2 + \beta |\Delta|^4 + \gamma |\Delta|^6 \cdots \]
\[F(\Delta) = \alpha |\Delta|^2 + \beta |\Delta|^4 + \gamma |\Delta|^6 \cdots \]
\[F(\Delta) = \alpha|\Delta|^2 + \beta|\Delta|^4 + \gamma|\Delta|^6 \cdots \]

Landau theory

First order possible for \(\beta < 0 \)

BCS limit: \(\left(\frac{T_t}{\Delta}, \frac{h_t}{\Delta} \right) = (0.3188, 0.6061) \)
We are interested in fixed $N_{\uparrow}, N_{\downarrow}$!

First order transition \sim phase separation
We are interested in fixed N_{\uparrow}, N_{\downarrow}!

First order transition \sim phase separation

\[m(h) \]

\[m_N, m_S \]

\[h_c, h \]

\[T \]

\[S, N \]

\[PS \]
We are interested in fixed $N_{\uparrow}, N_{\downarrow}$!

First order transition \sim phase separation

Δ At $T \neq 0$ thermal qps \sim nonzero magnetization
We are interested in fixed $N_{\uparrow}, N_{\downarrow}$!

First order transition \sim phase separation

At $T \neq 0$ thermal qps \sim nonzero magnetization
We are interested in fixed $N_{\uparrow}, N_{\downarrow}$!

First order transition \sim phase separation

At $T \neq 0$ thermal qps \sim nonzero magnetization
We are interested in fixed $N_↑, N_↓$!

First order transition \sim phase separation

\uparrow At $T \neq 0$ thermal qps \sim nonzero magnetization
We are interested in fixed $N_{\uparrow}, N_{\downarrow}$!

First order transition \sim phase separation

- At $T \neq 0$ thermal qps \sim nonzero magnetization
- What happens away from BCS limit?
11 Magnetization in the crossover ($T = 0$)

$h > E_g$ without destroying S \(\leadsto\) quasiparticles enter superfluid
Magnetization in the crossover ($T = 0$)

$h > E_g$ without destroying S \quad \sim \quad \text{quasiparticles enter superfluid}

Sheehy and Radzihovsky, 2005
11 Magnetization in the crossover ($T = 0$)

$h > E_g$ without destroying S \sim quasiparticles enter superfluid

Expansion of tree level potential \sim tricritical point at

$$1/k_F a = 2.36799 \quad h/E_F = 6.87592$$
12 Finite temperature
12 Finite temperature

PUNCHLINE –
12 Finite temperature

PUNCHLINE –

They lie on a single tricritical line in \((1/k_F a, m, T)\)!
13 Phase diagram – mean field
$^3\text{He} - ^4\text{He}: \text{a paradigmatic BF mixture}$
15 Finite temperature: technology
15 Finite temperature: technology

Free energy at one loop

\[
\frac{S^{(1)}[\Delta]}{\beta V} = - \int \frac{d^3 q}{(2\pi)^3} T \sum_{\omega_m} \ln \Gamma(q, i\omega_m) \\
\omega_m = 2\pi m T
\]
15 Finite temperature: technology

Free energy at one loop

\[S^{(1)}[\Delta] = - \int \frac{d^3 q}{(2\pi)^3} T \sum_{\omega_m} \ln \Gamma(q, i\omega_m) \]

\[\omega_m = 2\pi m T \]

\[\Gamma^{-1}(q, i\omega_m) = \frac{1}{g} + \frac{1}{2} \int \frac{d^3 p}{(2\pi)^3} \left[\tanh \left(\frac{\xi_+ - h}{2T} \right) + \tanh \left(\frac{\xi_- + h}{2T} \right) \right] \frac{1}{i\omega_m - \xi_- - \xi_+} \]

\[\xi_{\pm} = \xi_p \pm q/2 \]
15 Finite temperature: technology

Free energy at one loop

\[
\frac{S^{(1)}[\Delta]}{\beta V} = - \int \frac{d^3 q}{(2\pi)^3} T \sum \omega_m \ln \Gamma(q, i\omega_m)
\]

\[
\omega_m = 2\pi m T
\]

\[
\Gamma^{-1}(q, i\omega_m) = \frac{1}{g} + \frac{1}{2} \int \frac{d^3 p}{(2\pi)^3} \left[\tanh \left(\frac{\xi_+ - h}{2T} \right) + \tanh \left(\frac{\xi_- + h}{2T} \right) \right] \frac{1}{i\omega_m - \xi_+ - \xi_-}
\]

\[
\xi_{\pm} = \xi_p \pm q/2
\]

\[
n = n_0(\mu, T) + 2 \int \frac{d\omega}{2\pi} \int \frac{d^3 q}{(2\pi)^3} n_B(\omega) \frac{\partial \delta(q, \omega)}{\partial \mu}
\]

\[
\delta = \text{Im } \log \Gamma
\]
\frac{\partial \delta(q, \omega)}{\partial \mu} \quad \text{Bound state}
\[
\frac{\partial \delta(q, \omega)}{\partial \mu}
\]
\frac{\partial \delta(q, \omega)}{\partial \mu}
\frac{\partial \delta(q, \omega)}{\partial \mu} = n_B(\omega)
\[\frac{\partial \delta(q, \omega)}{\partial \mu} \]

\[k_Fa \rightarrow -\infty \]

\[T(M/N) = T_{\text{BEC}}(N) \left[1 - \frac{M}{N} \right]^{2/3} \]
Nozières and Schmitt-Rink 1985, Sá de Melo et al. 1993
16 A surprise

\[n = n_0(\mu, h, T) + 2 \int \frac{d\omega}{2\pi} \int \frac{d^3q}{(2\pi)^3} n_B(\omega) \frac{\partial\delta(q, \omega)}{\partial\mu} \]

\[m = m_0(\mu, h, T) + 2 \int \frac{d\omega}{2\pi} \int \frac{d^3q}{(2\pi)^3} n_B(\omega) \frac{\partial\delta(q, \omega)}{\partial h} \]
16 A surprise

\[n = n_0(\mu, h, T) + 2 \int \frac{d\omega}{2\pi} \int \frac{d^3q}{(2\pi)^3} n_B(\omega) \frac{\partial \delta(q, \omega)}{\partial \mu} \]

\[m = m_0(\mu, h, T) + 2 \int \frac{d\omega}{2\pi} \int \frac{d^3q}{(2\pi)^3} n_B(\omega) \frac{\partial \delta(q, \omega)}{\partial h} \]

Compressibility \(-\partial^2 F/\partial \mu_s \partial \mu_{s'}, s, s' = \uparrow, \downarrow\) NOT +ve semi-definite
16 A surprise

\[n = n_0(\mu, h, T) + 2 \int \frac{d\omega}{2\pi} \int \frac{d^3q}{(2\pi)^3} n_B(\omega) \frac{\partial \delta(q, \omega)}{\partial \mu} \]

\[m = m_0(\mu, h, T) + 2 \int \frac{d\omega}{2\pi} \int \frac{d^3q}{(2\pi)^3} n_B(\omega) \frac{\partial \delta(q, \omega)}{\partial h} \]

Compressibility \(-\partial^2 F/\partial \mu_s \partial \mu_{s'}, s, s' = \uparrow, \downarrow\) NOT +ve semi-definite

NSR treatment unphysical in crossover regime!
17 The two-channel model

\[H = \sum_{p,s} \epsilon_p a^\dagger_{s,p} a_{s,p} + \sum_{q} \left(\frac{\epsilon_q}{2} + \varepsilon_0 \right) b^\dagger_q b_q + \frac{g}{\sqrt{V}} \sum_{p,q} b_q a^\dagger_{q+p,\uparrow} a^\dagger_{q+p,\downarrow} - p + \text{h.c.} \]

Feshbach boson
17 The two-channel model

\[H = \sum_{p,s} \epsilon_p a_{s,p}^\dagger a_{s,p} + \sum_q \left(\frac{\epsilon_q}{2} + \varepsilon_0 \right) b_q^\dagger b_q + \frac{g}{\sqrt{V}} \sum_{p,q} b_q a_{\uparrow,q+p}^\dagger a_{\downarrow,-p} + \text{h.c.} \]

Feshbach boson

Scattering amplitude

\[f(E) = -\frac{\hbar \gamma}{\sqrt{m}} \frac{1}{E - \varepsilon_0 + i\gamma \sqrt{E}} \]

with \(\gamma = \frac{g^2 m^{3/2}}{4\pi} \)
17 The two-channel model

\[H = \sum_{p,s} \epsilon_p a_{s,p}^\dagger a_{s,p} + \sum_q \left(\frac{\epsilon_q}{2} + \varepsilon_0 \right) b_q^\dagger b_q + \frac{g}{\sqrt{V}} \sum_{p,q} b_q a_{\uparrow,q+p}^\dagger a_{\downarrow,-p} + \text{h.c.} \]

Feshbach boson

Scattering amplitude

\[f(E) = -\frac{\hbar \gamma}{\sqrt{m}} \frac{1}{E - \varepsilon_0 + i\gamma \sqrt{E}} \]

with \(\gamma = g^2 m^{3/2} / 4\pi \)

Scattering length \((f(0) = -a) \)

\[a = -\frac{\hbar \gamma}{\sqrt{m} \varepsilon_0} \frac{1}{\sqrt{m} \varepsilon_0} \]
18 One channel or two?

Experimentally, resonances are broad \((\text{width } \gg \text{ other scales})\)
Exponentially, resonances are broad (width \gg other scales)

For $\gamma \to \infty$ the two models are equivalent:

- At the two-particle level
Experimentally, resonances are broad (width \gg other scales)

For $\gamma \to \infty$ the two models are equivalent:

- At the two-particle level
- In mean field
18 One channel or two?

Experimentally, resonances are broad (width \gg other scales)

For $\gamma \to \infty$ the two models are equivalent:

- At the two-particle level
- In mean field
- With gaussian fluctuations
18 One channel or two?

Experimentally, resonances are broad (width \gg other scales)

For $\gamma \to \infty$ the two models are equivalent:

- At the two-particle level
- In mean field
- With gaussian fluctuations

...and presumably generally!
18 One channel or two?

Experimentally, resonances are broad \((\text{width} \gg \text{other scales})\)

For \(\gamma \rightarrow \infty\) the two models are equivalent:

- At the two-particle level
- In mean field
- With gaussian fluctuations

...and presumably generally!

But for general \(\gamma\)

\[
\Gamma_{1C}^{-1}(q, i\omega_m) \rightarrow \frac{q^2}{4m} - i\omega_m + \tilde{\gamma}\Gamma_{1C}^{-1}(q, i\omega_m)
\]

\(\tilde{\gamma} \sim \gamma/\sqrt{E_F}\) is small parameter
19 The MIT experiment

Zwierlein et al. 2005
The Rice experiment

Partridge et al. 2005
Evidence for P_{crit}
Evidence for P_{crit}

- Is it just thermal activation? $m_S(T \neq 0) \neq 0$
Evidence for P_{crit}

- Is it just thermal activation? $m_S(T \neq 0) \neq 0$
- Or fundamental change in g.s.? [strong qp interactions?]
• Quantum phase transitions \((T = 0)\)

Simplest approximation gave...
Quantum phase transitions \((T = 0)\) are more likely...
- Quantum phase transitions $(T = 0)$

more likely…

m/n

1

N

PS

S

$1/k_F a$

2^{nd} order QPT
Quantum phase transitions ($T = 0$) more likely...

Boson-fermion coupling destroys condensation at $T = 0$ only a few examples known...
21 More structure...
More structure...

- Inhomogenous superfluidity

\[\langle \psi_\downarrow(\mathbf{R} + \mathbf{r}/2)\psi_\uparrow(\mathbf{R} - \mathbf{r}/2) \rangle \propto e^{i\mathbf{Q} \cdot \mathbf{R}} F(\mathbf{r}) \]

\[k_{F\uparrow} - k_{F\downarrow} \sim Q \]
21 More structure...

- Inhomogenous superfluidity

\[\langle \psi_{\downarrow}(\mathbf{R} + \mathbf{r}/2)\psi_{\uparrow}(\mathbf{R} - \mathbf{r}/2) \rangle \propto e^{iQ \cdot \mathbf{R} F(\mathbf{r})} \]

\[k_{F\uparrow} - k_{F\downarrow} \sim Q \]

FFLO
22 Summary

- Better understanding of two component fermi gas
 \[N_{\uparrow} \neq N_{\downarrow} \]
 \[\sim \text{Line of tricritical points in } (1/k_F a, m, T) \]
 \[\sim \text{Atomic gases demand it!} \]
- Rich structure when \[N_{\uparrow} \neq N_{\downarrow} \]
 \[\sim \text{Line of tricritical points in } (1/k_F a, m, T) \]
- Analytic approaches to the broad resonance (single channel) limit DO require new ideas
22 Summary

- Better understanding of two component fermi gas
 \Rightarrow Atomic gases demand it!

- Rich structure when $N_\uparrow \neq N_\downarrow$
 \Rightarrow Line of tricritical points in $(1/k_F a, m, T)$

- Analytic approaches to the broad resonance (single channel) limit DO require new ideas
22 Summary

- Better understanding of two component fermi gas
 \[N_{\uparrow} \neq N_{\downarrow} \]
 \(\Rightarrow \) Line of tricritical points in \((1/k_F a, m, T)\)

- Rich structure when \(N_{\uparrow} \neq N_{\downarrow} \)
 \(\Rightarrow \) Atomic gases demand it!

- Analytic approaches to the broad resonance (single channel) limit DO require new ideas
22 Summary

- Better understanding of two component fermi gas

 → Atomic gases demand it!

- Rich structure when $N_\uparrow \neq N_\downarrow$

 → Line of tricritical points in $(1/k_F a, m, T)$

- Analytic approaches to the broad resonance (single channel) limit DO require new ideas

Detailed experimental phase diagram not far away!
23 Validity of the calculation
23 Validity of the calculation

- 2nd order transition $d_{\text{upper}} = 4$
Validity of the calculation

- 2^{nd} order transition $d_{\text{upper}} = 4$
- Ginzburg region
23 Validity of the calculation

- 2nd order transition \(d_{\text{upper}} = 4\)
- Ginzburg region
 \[
 \left(\frac{\xi_T}{\xi_0} \right)^{4-d} \ll 1
 \]
 \[
 \sim t \frac{4-d}{2} \ll 1
 \]
23 Validity of the calculation

- 2nd order transition $d_{\text{upper}} = 4$

- Ginzburg region
 - $(\xi_T/\xi_0)^{4-d} \ll 1$
 - $t \frac{4-d}{2} \ll 1$
 - OK for $1/k_Fa \to \pm\infty$
23 Validity of the calculation

- 2nd order transition $d_{\text{upper}} = 4$

- Ginzburg region
 - $(\xi_T/\xi_0)^{4-d} \ll 1$
 - $\sim t^{\frac{4-d}{2}} \ll 1$
 - OK for $1/k_F a \rightarrow \pm \infty$
23 Validity of the calculation

- 2nd order transition \(d_{\text{upper}} = 4 \)

- Ginzburg region
 - \((\xi_T/\xi_0)^{4-d} \ll 1 \)
 - \(t^{\frac{4-d}{2}} \ll 1 \)
 - OK for \(1/k_F a \rightarrow \pm \infty \)

- At tricritical point \(d_{\text{upper}} = 3 \)

\(\sim \text{only logarithmic corrections} \)
24 The ‘magnetized superfluid’ as a Fermi Liquid
24 The ‘magnetized superfluid’ as a Fermi Liquid

Effective Interaction of He3 Atoms in Dilute Solutions of He3 in He4 at Low Temperatures

J. Bardeen, G. Baym,* and D. Pines
The ‘magnetized superfluid’ as a Fermi Liquid

Effective Interaction of He3 Atoms in Dilute Solutions of He3 in He4 at Low Temperatures

J. Bardeen, G. Baym,*, and D. Pines

- Phonon-mediated attraction between qp's

~Possibility of [p-wave] pairing
The ‘magnetized superfluid’ as a Fermi Liquid

Effective Interaction of He3 Atoms in Dilute Solutions of He3 in He4 at Low Temperatures

J. Bardeen, G. Baym,* and D. Pines

- Phonon-mediated attraction between qp’s

 ~\rightarrow Possibility of [p-wave] pairing

- $p \cdot v_s$ coupling between qp’s and condensate
25 p-wave pairing of quasiparticles
25 p-wave pairing of quasiparticles

Superfluid phonons give attractive interaction

\[U_{\text{ind}}(q, \omega) = U_{FB}^2 \chi(q, \omega) \]

\[\chi(q, \omega) = \frac{n_B q^2}{m_B (\omega^2 - \omega_q^2)} \]

\[\omega_q \rightarrow c_s q \text{ as } q \rightarrow 0 \]
25 p-wave pairing of quasiparticles

Superfluid phonons give attractive interaction

\[U_{\text{ind}}(q, \omega) = U_{FB}^2 \chi(q, \omega) \]

\[\chi(q, \omega) = \frac{n_B q^2}{m_B (\omega^2 - \omega_q^2)} \]

\[\omega_q \to c_s q \text{ as } q \to 0 \]

Maximal p-wave gap

\[\Delta_{P,\text{max}} \sim E_F \exp \left(-\frac{5.6}{|k_F a|} \right) \]

Bulgac et al. 2006
25 p-wave pairing of quasiparticles

Superfluid phonons give attractive interaction

\[U_{\text{ind}}(q, \omega) = U_{FB}^2 \chi(q, \omega) \]

\[\chi(q, \omega) = \frac{n_B q^2}{m_B (\omega^2 - \omega_q^2)} \]

\[\omega_q \rightarrow c_s q \text{ as } q \rightarrow 0 \]

Maximal p-wave gap

\[\Delta_{P,\text{max}} \sim E_F \exp \left(-\frac{5.6}{|k_F a|} \right) \]

Bulgac et al. 2006

Weak coupling only – in general need FL params
26 Generalized FFLO phases
26 Generalized FFLO phases

Add a qp with p_0, $\varepsilon^{(0)}(p_0)$ to moving fluid

$$E = \varepsilon^{(0)}(p_0) + p_0 \cdot v + \frac{1}{2} (M + m) v^2 \quad P = p_0 + (M + m) v$$
26 Generalized FFLO phases

Add a qp with p_0, $\varepsilon^{(0)}(p_0)$ to moving fluid

$$E = \varepsilon^{(0)}(p_0) + p_0 \cdot v + \frac{1}{2} (M + m) v^2$$

$$P = p_0 + (M + m) v$$

qp energy and momentum in moving fluid

$$\varepsilon(p, v) = \varepsilon^{(0)}(p_0) + p_0 \cdot v + \frac{1}{2} m v^2,$$
$$p = p_0 + m v$$
26 Generalized FFLO phases

Add a qp with \(\mathbf{p}_0, \varepsilon^{(0)}(\mathbf{p}_0) \) to moving fluid

\[
E = \varepsilon^{(0)}(\mathbf{p}_0) + \mathbf{p}_0 \cdot \mathbf{v} + \frac{1}{2} (M + m) \mathbf{v}^2 \quad \mathbf{P} = \mathbf{p}_0 + (M + m) \mathbf{v}
\]

qp energy and momentum in moving fluid

\[
\varepsilon(\mathbf{p}, \mathbf{v}) = \varepsilon^{(0)}(\mathbf{p}_0) + \mathbf{p}_0 \cdot \mathbf{v} + \frac{1}{2} m \mathbf{v}^2, \quad \mathbf{p} = \mathbf{p}_0 + m \mathbf{v}
\]

or in terms of \(\mathbf{p} \)

\[
\varepsilon(\mathbf{p}, \mathbf{v}) = \varepsilon^{(0)}(\mathbf{p} - m \mathbf{v}) + \mathbf{p} \cdot \mathbf{v} - \frac{1}{2} m \mathbf{v}^2.
\]
\[\varepsilon(p, v) = \frac{p^2}{2m_d} + v_s \cdot p \left(1 - \frac{m}{m_d} \right) + O(v_s^2) \]
\[\varepsilon(p, v) = \frac{p^2}{2m_d} + v_s \cdot p \left(1 - \frac{m}{m_d} \right) + O(v_s^2) \]

\(f \) is fraction of dynamical effective mass \(m_d \) coming from dragging background superfluid.
\[
\varepsilon(p, v) = \frac{p^2}{2m_d} + v_s \cdot p \left(1 - \frac{m}{m_d}\right) + O(v_s^2)
\]

\(f \) is fraction of dynamical effective mass \(m_d \) coming from dragging background superfluid.

Generally, for a FL of such qp’s

\[m_d \equiv \frac{m_*}{1 + F_1} > m \]

Leggett, 1967
\[\varepsilon(p, v) = \frac{p^2}{2m_d} + v_s \cdot p \left(1 - \frac{m}{m_d} \right) + O(v_s^2) \]

\(f \) is fraction of dynamical effective mass \(m_d \) coming from dragging background superfluid.

Generally, for a FL of such qp’s

\[
m_d \equiv \frac{m_*}{1 + F_1} > m
\]

Effect on superfluid fraction

\[
f_s = \frac{\rho_B - f \rho_F}{\rho_B + \rho_F}
\]

Leggett, 1967
\[\varepsilon(p, v) = \frac{p^2}{2m_d} + v_s \cdot p \left(1 - \frac{m}{m_d} \right) + O(v_s^2) \quad \equiv f \]

\(f \) is fraction of dynamical effective mass \(m_d \) coming from dragging background superfluid.

Generally, for a FL of such qp’s

\[m_d \equiv \frac{m_*}{1 + F_1} > m \]

Effect on superfluid fraction

\[f_s = \frac{\rho_B - f \rho_F}{\rho_B + \rho_F} \]

\(f_s < 0 \sim \text{FFLO?} \)
27 Outlook: phases of atomic matter

- BF mixtures in general
27 Outlook: phases of atomic matter

- BF mixtures in general
 - Doppler shift interaction $H_{\text{Doppler}} = \mathbf{p} \cdot \mathbf{v}_s$
27 Outlook: phases of atomic matter

- BF mixtures in general
 - Doppler shift interaction $H_{\text{Doppler}} = f p \cdot v_s$

 Conjecture: f passes 1 → 0 as BCS → BEC
Outlook: phases of atomic matter

- BF mixtures in general
 - Doppler shift interaction $H_{\text{Doppler}} = fp \cdot vs$

 Conjecture: f passes $1 \rightarrow 0$ as BCS \rightarrow BEC

- Generalized FFLO phases?
27 Outlook: phases of atomic matter

- BF mixtures in general
 - Doppler shift interaction $H_{\text{Doppler}} = fp \cdot \mathbf{v}_s$

 Conjecture: f passes $1 \to 0$ as BCS \to BEC

- Generalized FFLO phases?

- New interactions
27 Outlook: phases of atomic matter

- BF mixtures in general
 - Doppler shift interaction \(H_{\text{Doppler}} = fp \cdot v_s \)
 Conjecture: \(f \) passes 1 → 0 as BCS → BEC
 - Generalized FFLO phases?

- New interactions
 - Recent realization of dipolar condensate
 Mag. dipole int. in Cr is 36× stronger
27 Outlook: phases of atomic matter

- BF mixtures in general
 - Doppler shift interaction \(H_{\text{Doppler}} = f \mathbf{p} \cdot \mathbf{v}_s \)
 - Conjecture: \(f \) passes \(1 \to 0 \) as BCS \(\to \) BEC
 - Generalized FFLO phases?

- New interactions
 - Recent realization of dipolar condensate
 - Mag. dipole int. in Cr is \(36 \times \) stronger
 - Heteronuclear molecules

Electric dipole moment
27 Outlook: phases of atomic matter

- BF mixtures in general
 - Doppler shift interaction
 \[H_{\text{Doppler}} = fp \cdot vs \]
 - Conjecture: \(f \) passes \(1 \rightarrow 0 \) as BCS \(\rightarrow \) BEC
 - Generalized FFLO phases?

- New interactions
 - Recent realization of dipolar condensate
 Mag. dipole int. in Cr is \(36 \times \) stronger
 - Heteronuclear molecules
 Electric dipole moment

- Lattice systems ...
Outlook II: quantum matter wave optics
28 Outlook II: quantum matter wave optics

$k_1 \quad k_2$

$k_1 \quad k_2$

$k_1 \quad k_2$
28 Outlook II: quantum matter wave optics

\[k_1 \quad k_2 \]

\[b = -1 \quad b = +1 \]

\[E(p) \]

\[\frac{2\pi}{T} \]