The phase diagram of polar condensates
Taking the square root of a vortex

Austen Lamacraft [with Andrew James]
arXiv:1009.0043

University of Virginia

September 23, 2010
KITP, UCSB
1 Magnetism in Bose condensates
2 Order parameters and topology in polar condensates
3 Domain walls, disclinations, and the phase diagram in 2D
4 Generalized XY model: view from field theory
1 Magnetism in Bose condensates

2 Order parameters and topology in polar condensates

3 Domain walls, disclinations, and the phase diagram in 2D

4 Generalized XY model: view from field theory
Magnetic Bose condensates

BEC \Rightarrow magnetism for bosons with spin!

Condensate wavefunction $\langle \phi(r) \rangle \neq 0$ is a spinor and must choose a ‘direction’ in spin space.

Example: spin-polarized Hydrogen [Siggia & Ruckenstein, 1980]

$$
\phi = \left(\frac{\phi_1}{2} - \frac{\phi_{-1}}{2}\right) = e^{i\psi} \left(e^{-i\phi/2} \cos \theta/2 e^{i\phi/2} \sin \theta/2\right)
$$

All states (of fixed norm) obtained by rotation of reference state.

Does magnetism \Rightarrow BEC? or can ordering happen sequentially as temperature lowered?
BEC \Rightarrow magnetism for bosons with spin!

Condensate wavefunction $\langle \phi(r) \rangle \neq 0$ is a spinor and must choose a ‘direction’ in spin space.

Example: spin-polarized Hydrogen [Siggia & Ruckenstein, 1980]

$$
\phi = \begin{pmatrix} \phi_{1/2} \\ \phi_{-1/2} \end{pmatrix} = e^{i\psi} \begin{pmatrix} e^{-i\varphi/2} \cos \theta/2 \\ e^{i\varphi/2} \sin \theta/2 \end{pmatrix}
$$

All states (of fixed norm) obtained by rotation of reference state
Magnetic Bose condensates

BEC \Rightarrow magnetism for bosons with spin!

Condensate wavefunction $\langle \phi(r) \rangle \neq 0$ is a spinor and must choose a ‘direction’ in spin space.

Example: spin-polarized Hydrogen [Siggia & Ruckenstein, 1980]

$$\phi = \left(\begin{array}{c} \phi_{1/2} \\ \phi_{-1/2} \end{array} \right) = e^{i\psi} \left(\begin{array}{c} e^{-i\varphi/2} \cos \theta/2 \\ e^{i\varphi/2} \sin \theta/2 \end{array} \right)$$

All states (of fixed norm) obtained by rotation of reference state

Does magnetism \Rightarrow BEC?

or can ordering happen sequentially as temperature lowered?
Higher spin gives additional possibilities

Consider the spin-1 state

\[
\phi = \begin{pmatrix} \phi_1 \\ \phi_0 \\ \phi_{-1} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}
\]

Not hard to show that

\[
\phi \dagger (m \cdot S(1)) \phi = 0
\]

(S(1) the spin-1 matrices)

Yet evidently there is still an axis (headless?)

Fixing the nature of the BEC requires some dynamical input
Higher spin gives additional possibilities

Consider the spin-1 state

\[
\phi = \begin{pmatrix} \phi_1 \\ \phi_0 \\ \phi_{-1} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}
\]

Not hard to show that \(\phi^\dagger (m \cdot S^{(1)}) \phi = 0 \) (\(S^{(1)} \) the spin-1 matrices)
Higher spin gives additional possibilities

Consider the spin-1 state

$$\phi = \begin{pmatrix} \phi_1 \\ \phi_0 \\ \phi_{-1} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

- Not hard to show that $\phi^\dagger (m \cdot S^{(1)}) \phi = 0$ ($S^{(1)}$ the spin-1 matrices)
- Yet evidently there is still an axis (headless?)
Higher spin gives additional possibilities

Consider the spin-1 state

\[\phi = \begin{pmatrix} \phi_1 \\ \phi_0 \\ \phi_{-1} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \]

- Not hard to show that \(\phi^\dagger (\mathbf{m} \cdot \mathbf{S}^{(1)}) \phi = 0 \) (\(\mathbf{S}^{(1)} \) the spin-1 matrices)
- Yet evidently there is still an axis (headless?)
- Fixing the nature of the BEC requires some dynamical input (interactions)
Contact interactions in a spin-1 gas

Total spin 2
Contact interactions in a spin-1 gas

Total spin 0

- $m_F = 0$
- $m_F = 1$
- $m_F = -1$

Collision
Contact interactions in a spin-1 gas

\[H_{\text{int}} = \sum_{i < j} \delta(r_i - r_j) [g_0 P_0 + g_2 P_2] \]

\[= \sum_{i < j} \delta(r_i - r_j) [c_0 + c_2 S_i \cdot S_j] \]

\[c_0 = \frac{(g_0 + 2g_2)}{3} \quad c_2 = \frac{(g_2 - g_0)}{3} \]
Mean field ground states

\[H_{\text{int}} = \sum_{i<j} \delta(r_i - r_j) [g_0 P_0 + g_2 P_2] \]

\[= \sum_{i<j} \delta(r_i - r_j) [c_0 + c_2 S_i \cdot S_j] \]

Energy of state \(\Psi_{m_1 \cdots m_N}(r_1, \ldots, r_N) = \phi_{m_1}(r_1) \cdots \phi_{m_N}(r_N) \) involves

\[H_{\text{int}} = \frac{c_2}{2} (\phi^\dagger S \phi)^2 \]
Mean field ground states

\[H_{\text{int}} = \sum_{i<j} \delta(r_i - r_j) \left[g_0 P_0 + g_2 P_2 \right] \]

\[= \sum_{i<j} \delta(r_i - r_j) \left[c_0 + c_2 S_i \cdot S_j \right] \]

Energy of state \(\Psi_{m_1 \cdots m_N}(r_1, \ldots, r_N) = \phi_{m_1}(r_1) \cdots \phi_{m_N}(r_N) \) involves

\[H_{\text{int}} = \frac{c_2}{2} (\phi^\dagger S \phi)^2 \]

- \(c_2 < 0 \) (e.g. \(^{87}\text{Rb}\))
 - \(\phi^\dagger S \phi \) is maximized

- \(c_2 > 0 \) (e.g. \(^{23}\text{Na}\))
 - \(\phi^\dagger S \phi \) is minimized
Spin-1 states: Cartesian representation

\[\phi = a + ib \]

\[\left(S_i^{(1)} \right)_{jk} = -i \epsilon_{ijk} \]

\[\phi^\dagger S^{(1)} \phi = 2a \times b \]
Spin-1 states: Cartesian representation

\[\phi = a + ib \]
\[(S^{(1)}_i)_{jk} = -i\epsilon_{ijk} \]
\[\phi^\dagger S^{(1)} \phi = 2a \times b \]

\(c_2 < 0 \) (e.g. \(^{87}\)Rb)

- \(\phi^\dagger S \phi \) is maximized
- \(a \) and \(b \) perpendicular

\(c_2 > 0 \) (e.g. \(^{23}\)Na)

- \(\phi^\dagger S \phi \) is minimized
- \(a \) and \(b \) parallel
Spin-1 states: Cartesian representation

\[\phi = a + ib \]

\[\left(S_i^{(1)} \right)_{jk} = -i \epsilon_{ijk} \]

\[\phi^\dagger S^{(1)} \phi = 2a \times b \]

\[c_2 < 0 \text{ (e.g. } ^{87}\text{Rb)} \]
- \(\phi^\dagger S \phi \) is \textit{maximized}
- \(a \) and \(b \) \textit{perpendicular}
- Order parameter manifold is \(SO(3) \)

\[c_2 > 0 \text{ (e.g. } ^{23}\text{Na)} \]
- \(\phi^\dagger S \phi \) is \textit{minimized}
- \(a \) and \(b \) \textit{parallel}
- Order parameter written as \(\phi = n e^{i \theta} \)
Spin-1 states: Cartesian representation

\[\phi = a + ib \]

\[\left(S^{(1)}_i \right)_{jk} = -i \epsilon_{ijk} \]

\[\phi^\dagger S^{(1)} \phi = 2a \times b \]

\[c_2 < 0 \text{ (e.g. } ^{87}\text{Rb)} \]
- \(\phi^\dagger S \phi \) is maximized
- \(a \) and \(b \) perpendicular
- Order parameter manifold is \(SO(3) \)
- Ferromagnetic condensate

\[c_2 > 0 \text{ (e.g. } ^{23}\text{Na)} \]
- \(\phi^\dagger S \phi \) is minimized
- \(a \) and \(b \) parallel
- Order parameter written as \(\phi = ne^{i\theta} \)
- Polar condensate
The Bose Ferromagnet

Stamper-Kurn group, Berkeley
Mean field ground state written $\phi = ne^{i\theta}$

There is an evident redundancy: (n, θ) and $(-n, \theta + \pi)$ are the same
Mean field ground state written \(\phi = n e^{i\theta} \). There is an evident redundancy: \((n, \theta)\) and \((-n, \theta + \pi)\) are the same.
Order parameter manifold for polar condensates

Mean field ground state written $\phi = ne^{i\theta}$

There is an evident redundancy: (n, θ) and $(-n, \theta + \pi)$ are the same
Disclinations in nematic liquid crystals

Principles of condensed matter physics

P. M. Chaikin & T. C. Lubensky

Austen Lamacraft (University of Virginia)
Consequences for Kosterlitz–Thouless transition

Circulation quantum is *halved*

\[\oint \mathbf{v} \cdot d\mathbf{l} = \frac{\hbar}{m} \oint \nabla \theta = \frac{\hbar}{m} \pi n = \frac{h}{2m} n, \quad n \in \mathbb{Z} \]
Consequences for Kosterlitz–Thouless transition

Circulation quantum is *halved*

\[\oint \mathbf{v} \cdot d\mathbf{l} = \frac{\hbar}{m} \oint \nabla \theta = \frac{\hbar}{m} \pi n = \frac{\hbar}{2m} n, \quad n \in \mathbb{Z} \]

Consider free energy of a single half vortex / disclination

\[E = \frac{n_s}{2m} \int d\mathbf{r} \mathbf{v}^2 = \frac{\pi n_s \hbar^2}{4m} \ln \left(\frac{L}{\xi} \right) \]

\[S = k_B \ln \left(\frac{L}{\xi} \right)^2 \]

\[F = U - TS = \left(\frac{\pi n_s \hbar^2}{4m} - 2k_B T \right) \ln \left(\frac{L}{\xi} \right) \]
Consequences for Kosterlitz–Thouless transition

Circulation quantum is *halved*

\[
\oint \mathbf{v} \cdot d\mathbf{l} = \frac{\hbar}{m} \oint \nabla \theta = \frac{\hbar}{m} \pi n = \frac{\hbar}{2m} n, \quad n \in \mathbb{Z}
\]

Consider free energy of a single half vortex / disclination

\[
E = \frac{n_s}{2m} \int d\mathbf{r} \mathbf{v}^2 = \frac{\pi n_s \hbar^2}{4m} \ln \left(\frac{L}{\xi} \right)
\]

\[
S = k_B \ln \left(\frac{L}{\xi} \right)^2
\]

\[
F = U - TS = \left(\frac{\pi n_s \hbar^2}{4m} - 2k_B T \right) \ln \left(\frac{L}{\xi} \right)
\]

Vanishes for

\[
n_s = \frac{8}{\pi} \frac{mk_B T}{\hbar^2}
\]
Consequences for Kosterlitz–Thouless transition

Circulation quantum is *halved*

\[\oint \mathbf{v} \cdot d\mathbf{l} = \frac{\hbar}{m} \oint \nabla \theta = \frac{\hbar}{m} \pi n = \frac{h}{2m} n, \quad n \in \mathbb{Z} \]

Consider free energy of a single half vortex / disclination

\[E = n_s \int d\mathbf{r} v^2 - \pi n_s \hbar^2 \ln (L) \]

Possible Experiments on Two-dimensional Nematics

BY P. G. DE Gennes

Physique du Solide, Faculté des Sciences, 91 Orsay

Received 9th July, 1971

Vanishes for

\[n_s = \frac{8}{\pi} \frac{m k_B T}{\hbar^2} \]
Jump is 4× bigger than usual! (Korshunov, 1985)

\[\Delta n_{KT/2} = 4 \Delta n_{KT} = \frac{8}{\pi} \frac{mk_B T_c}{\pi \hbar^2} \]
Topological Defects and the Superfluid Transition of the $s = 1$ Spinor Condensate in Two Dimensions

Subroto Mukerjee,1,2 Cenke Xu,1 and J.E. Moore1,2

![Diagram](https://example.com/diagram.png)

KT transition mediated by half-vortices / disclinations

PRL 97, 120406 (2006)
What about the n degrees of freedom?

A simple model is

$$H = -\sum_{ij} \phi^\dagger_i \phi_j + \text{c.c} = -2t \sum_{ij} n_i \cdot n_j \cos (\theta_i - \theta_j)$$

Taking the continuum limit...

$$H \to a^2 - d t \int d^3 r \left[(\nabla \theta)^2 + (\nabla n)^2 \right]$$

Identifying (n, θ) and $(-n, \theta + \pi)$ ties half vortices to disclinations.

Beneath KT transition, half vortices are absent and one can treat the n degrees of freedom as Heisenberg spins.

Mermin–Wagner theorem says they do not order at finite temperature.
What about the n degrees of freedom?

- A simple model is

\[
H = -t \sum_{\langle ij \rangle} \phi_i^\dagger \phi_j + \text{c.c}
= -2t \sum_{ij} n_i \cdot n_j \cos (\theta_i - \theta_j)
\]
What about the \(n \) degrees of freedom?

- A simple model is

\[
H = -t \sum_{<ij>} \phi_i^\dagger \phi_j + \text{c.c}
\]

\[
= -2t \sum_{ij} \mathbf{n}_i \cdot \mathbf{n}_j \cos(\theta_i - \theta_j)
\]

- Taking the continuum limit..

\[
H \rightarrow a^{2-d} t \int d\mathbf{r} \left[(\nabla \theta)^2 + (\nabla \mathbf{n})^2 \right]
\]

Identifying \((\mathbf{n}, \theta)\) and \((-\mathbf{n}, \theta + \pi)\) ties half vortices to disclinations.
What about the \(n \) degrees of freedom?

- A simple model is

\[
H = -t \sum_{<ij>} \phi_i^\dagger \phi_j + \text{c.c}
\]

\[
= -2t \sum_{ij} \mathbf{n}_i \cdot \mathbf{n}_j \cos (\theta_i - \theta_j)
\]

- Taking the continuum limit...

\[
H \rightarrow a^{2-d} t \int d\mathbf{r} \left[(\nabla \theta)^2 + (\nabla \mathbf{n})^2 \right]
\]

Identifying \((\mathbf{n}, \theta)\) and \((-\mathbf{n}, \theta + \pi)\) ties half vortices to disclinations

- Beneath KT transition, half vortices are absent and one can treat the \(n \) degrees of freedom as Heisenberg spins
What about the n degrees of freedom?

- A simple model is

$$H = -t \sum_{<ij>} \phi_i^\dagger \phi_j + \text{c.c}$$

$$= -2t \sum_{ij} \mathbf{n}_i \cdot \mathbf{n}_j \cos(\theta_i - \theta_j)$$

- Taking the continuum limit..

$$H \rightarrow a^{2-d} t \int d\mathbf{r} \left[(\nabla \theta)^2 + (\nabla \mathbf{n})^2 \right]$$

Identifying (\mathbf{n}, θ) and $(-\mathbf{n}, \theta + \pi)$ ties half vortices to disclinations.

- Beneath KT transition, half vortices are absent and one can treat the n degrees of freedom as Heisenberg spins.

- Mermin–Wagner theorem says they do not order at finite temperature.
1 Magnetism in Bose condensates

2 Order parameters and topology in polar condensates

3 Domain walls, disclinations, and the phase diagram in 2D

4 Generalized XY model: view from field theory
Within the spin-1 multiplet, the Zeeman energy is

\[H_{Z,m} = pm + qm^2 \]

\(p \propto B \text{ linear and } q \propto B^2/A_{HF} \text{ quadratic Zeeman effects} \)
Within the spin-1 multiplet, the Zeeman energy is

$$H_{Z,m} = pm + qm^2$$

$p \propto B$ linear and $q \propto B^2/A_{HF}$ quadratic Zeeman effects

- Spin conservation makes p irrelevant, leading only to precession
The Zeeman effect

Within the spin-1 multiplet, the Zeeman energy is

\[H_{Z,m} = pm + qm^2 \]

\[p \propto B \text{ linear and } q \propto B^2/A_{HF} \text{ quadratic Zeeman effects} \]

- Spin conservation makes \(p \) irrelevant, leading only to precession
- At large \(q \ m = 0 \) state only occupied: ordering via usual KT transition
Within the spin-1 multiplet, the Zeeman energy is

\[H_{Z,m} = pm + qm^2 \]

\(p \propto B \) \textit{linear} and \(q \propto B^2/A_{HF} \) \textit{quadratic} Zeeman effects

- Spin conservation makes \(p \) irrelevant, leading only to precession
- At large \(q \ m = 0 \) state only occupied: ordering via usual KT transition

Basic problem:

How does the phase diagram evolve with \(q \) from the \(\frac{1}{2} \)KT transition mediated by half vortices to the usual KT transition?
Consequences of quadratic Zeeman effect

\[H_{QZ} = q \sum_i \phi_i^\dagger S_z^2 \phi_i = q \sum_i (1 - n_{z,i}^2) \]
Consequences of quadratic Zeeman effect

\[H_{QZ} = q \sum_i \phi_i^\dagger S_z^2 \phi_i = q \sum_i \left(1 - n_{z,i}^2 \right) \]

\[q > 0 \text{ favors alignment of } \mathbf{n} \text{ in } z\text{-direction (easy axis)} \]

\[H = -2t \sum_{ij} \mathbf{n}_i \cdot \mathbf{n}_j \cos (\theta_i - \theta_j) - q \sum_i n_{z,i}^2 \]
Consequences of quadratic Zeeman effect

\[H_{QZ} = q \sum_i \phi_i^\dagger S_z^2 \phi_i = q \sum_i (1 - n_{z,i}^2) \]

\(q > 0 \) favors alignment of \(\mathbf{n} \) in \(z \)-direction (easy axis)

\[H = -2t \sum_{ij} \mathbf{n}_i \cdot \mathbf{n}_j \cos (\theta_i - \theta_j) - q \sum_i n_{z,i}^2 \]

Large \(q \) fixes \(\mathbf{n} \): regular KT transition
Conjectured phase diagram

Temperature

Spin disordered Superfluid

Ising

Superfluid

Quadratic Zeeman (Domain wall energy)
Monte Carlo simulation

Include hopping of singlet pairs \(\phi \cdot \phi = \cos(2\theta) \)

\[
H = - \sum_{ij} [2t \mathbf{n}_i \cdot \mathbf{n}_j \cos(\theta_i - \theta_j) + u \cos(2 [\theta_i - \theta_j])] - q \sum_i n_{z,i}^2
\]
Intermediate phase with singlet pair quasi-long range order

(data at $u = 1$)
The phase diagram of polar condensates
Binder cumulant

\[\Phi = \sum_i \phi_i \]
\[U_4 = \frac{\langle (\Phi^\dagger \Phi)^2 \rangle}{\langle \Phi^\dagger \Phi \rangle^2} \]

q=1

![Graph showing the relationship between Binder cumulant and temperature for different system sizes L=8, 16, 24, 32.](image-url)
Ising scaling for the lower transition

\[U_4 = f \left(\frac{L}{\xi} \right) = f \left(L \left| \frac{T - T_c}{T_c} \right|^{\nu} \right) \]
Ising scaling for the lower transition

Binder cumulant

\[L = 8, 16, 24, 32, 40 \]

Consistent with \(\nu = 1 \)
Ising scaling for the lower transition

Consistent with $\nu = 1$

Austen Lamacraft (University of Virginia)
What about finite magnetization?

At finite magnetization have *spin-flop* transition: \(n \) flops into \(x - y \) plane

Analogous to antiferromagnet
What about finite magnetization?

At finite magnetization have *spin-flop* transition: \(n \) flops into \(x - y \) plane

Analogous to antiferromagnet

Diagram:

Zero temperature Heisenberg fixed point
1. Magnetism in Bose condensates
2. Order parameters and topology in polar condensates
3. Domain walls, disclinations, and the phase diagram in 2D
4. Generalized XY model: view from field theory
Generalized XY model

\[H_{\text{gen}} = - \sum_{\langle ij \rangle} \left(\Delta \cos(\theta_i - \theta_j) + (1 - \Delta) \cos(2\theta_i - 2\theta_j) \right) \]

Korshunov (1985), Grinstein & Lee (1985)
Field theoretic view: how can domain walls end?\footnote{Thanks to Paul Fendley for discussions}
Recall *disorder operator* μ in Ising model
Recall *disorder operator* μ in Ising model

Half vortex insertion tied to disorder operator

1 Thanks to Paul Fendley for discussions
The phase diagram of polar condensates from $\mu \cos(\phi/2)$ perturbation.

- Temperature axis.
- $1/2 KT$ and KT lines.
- Spin disordered superfluid and superfluid regions.
- Ising line for $\langle \mu \rangle \neq 0$.
- Quadratic Zeeman (Domain wall energy) parameter.
\(\frac{1}{2} K T \) occurs when \(\cos(\phi/2) \) becomes relevant if \(\langle \mu \rangle \neq 0 \)
Phase diagram from $\mu \cos(\phi/2)$ perturbation

- $\frac{1}{2}KT$ occurs when $\cos(\phi/2)$ becomes relevant if $\langle \mu \rangle \neq 0$
- Along Ising line: continuous transition until $\mu \cos(\phi/2)$ relevant
Scaling with $\mu \cos(\phi/2)$ perturbation

$$H_{\text{vortex}} = \lambda \mu \cos \phi/2$$

Three couplings to keep track of

1. λ, half vortex fugacity
2. t_I, energy operator for Ising
3. Stiffness K of superfluid
Scaling with $\mu \cos(\phi/2)$ perturbation

$$H_{\text{vortex}} = \lambda \mu \cos \phi/2$$

Three couplings to keep track of

1. λ, half vortex fugacity
2. t_I, energy operator for Ising
3. Stiffness K of superfluid

\[
\frac{d\lambda}{d\ell} = \left(2 - \frac{1}{8} - \frac{\pi K}{4}\right) \lambda + \frac{1}{2} \lambda t_I
\]

\[
\frac{dt_I}{d\ell} = t_I + \frac{\lambda^2}{2}
\]

\[
\frac{dK}{d\ell} = \lambda^2
\]
RG flow for $K > 15/2\pi$

Temperature

$<\mu>$ nonzero

Spin disordered Superfluid

$1/2 K T$

Ising

Ising fp