Benthic oxygen consumption rates during hypoxic conditions on the Oregon continental shelf: Evaluation of the eddy correlation method

Clare E. Reimers,1 H. Tuba Özkan-Haller,1 Peter Berg,2 Allan Devol,3 Kristina McCann-Grosvenor,1 and Rhea D. Sanders1

Received 1 September 2011; revised 6 December 2011; accepted 11 December 2011; published 10 February 2012.

[1] Three stations, at ~80 m water depth on the Oregon shelf between 44.7°N and 43.9 N, were studied under hypoxic conditions in late spring and summer of 2009 to determine benthic oxygen consumption rates. Oxygen fluxes were derived from eddy correlation (EC) measurements made from an autonomous lander deployed for 11–15 h at a time. Average oxygen consumption rates ranged from 3.2 to 9.8 mmol m⁻² d⁻¹ and were highest at the southernmost station. Methods for separating eddy components and rotating coordinates were examined for effects on EC fluxes. It was found that oscillations at frequencies associated with surface and internal waves made significant contributions, but horizontal component biasing could be minimized by wave-based rotation methods. Additional measurements included benthic boundary layer properties, and sediment permeability and profiles of sediment organic C, chlorophyll-α, excess²¹⁰Pb and % fines. Comparative flux estimates were determined from benthic chamber measurements and microelectrode profiles at two of the stations. The chamber O₂ consumption rates exceeded the EC fluxes by factors of 1.2–1.8, which may reflect enclosure effects, the different spatial and temporal scales of the measurements, and/or inhomogeneous benthic respiration rates. The magnitudes of the fluxes by either method, however, are low for shelf depths. Thus, for benthic O₂ consumption to contribute to Oregon shelf hypoxia, bottom waters must be slowly renewed and minimally ventilated by along- or across-shelf advection and turbulent mixing. Circulation studies indicate these conditions are favored by increased near-bottom stratification during persistent summer upwelling-relaxation cycles.

1. Introduction

[2] In recent years eddy correlation (EC) has gained acceptance as a valid technique for determining dissolved oxygen (O₂) fluxes between aquatic sediments and overlying water masses. To derive an O₂ eddy flux, the covariance between high-resolution fluctuations of both O₂ and vertical velocity measured above the sediment surface (typically at a height between 10 and 20 cm) is computed. Among EC’s described advantages are that (1) measurements are made under natural light and hydrodynamic conditions, (2) the sediments are not enclosed or disturbed, and (3) derived fluxes reflect benthic O₂ exchange processes occurring over large sediment surface areas (tens of square meters) [Berg et al., 2007]. EC aquatic applications are increasing and include studies of O₂ dynamics in a shallow river bed, two lakes, a variety of nearshore marine environments, and a deep marine bay [Berg et al., 2003, 2009; Kuwae et al., 2006; McGinnis et al., 2008; Brand et al., 2008; Berg and Huettel, 2008; Ghad et al., 2010; Hume et al., 2011]. The method is analogous to the measurement of near-bottom, turbulence-induced heat and momentum fluxes often undertaken by physical oceanographers [e.g., Shaw and Trowbridge, 2001]. However, it also requires many of the same assumptions about conditions, mass balance, and data filtering-correction techniques that are used by boundary layer meteorologists to discriminate between good and erroneous gas flux measurements at land-atmosphere interfaces [e.g., Finnigan, 1999; Finnigan et al., 2003; Aubinet, 2008]. Thus, these assumptions should be reevaluated in every new field situation.

[3] In this paper, EC measurements are reported that were made on the central Oregon continental shelf in late spring and summer of 2009 during conditions of coastal upwelling, hypoxia, and moderate wave energy. The acquisition of EC data in this dynamic and challenging environment was...
benthic role in O$_2$ or coupled carbon budgets [Riedl et al., 1972; Shum and Sundby, 1996; Huettel and Webster, 2001]. In fact, no measurements of benthic O$_2$ uptake made by traditional benthic chamber or microprofiling methods have been reported for sites <100 m on the Oregon shelf. Devol and Christensen [1993] do report chamber fluxes of −5 to −18 mmol O$_2$ m$^{-2}$ d$^{-1}$ from the neighboring Washington shelf, with the highest rates occurring at 114 m water depth associated with a midshelf silt deposit. Similarly, historic deficits of O$_2$ and nitrate that increase along salinity surfaces led Connolly et al. [2010] to infer that Washington shelf sediments are a regular sink for ~1 ± 0.2 μM O$_2$ d$^{-1}$ from the bottom boundary layer. This depletion rate suggests sediment respiration contributes to episodes of severe shelf hypoxia nearly equally with water column respiration [Connolly et al., 2010].

Certainly, an understanding of how ecosystem processes respond to local forcing or are linked to ocean basin-scale changes requires trusted baseline measurements. The EC technique produces rich data sets that yield information on local waves, currents, turbulence, and their impacts on benthic O$_2$ fluxes. In this paper we examine EC data from the Oregon shelf with a focus on three midshelf stations. Water column, sediment, O$_2$ microprofile, and benthic chamber data are also used to assess the along-shelf variability of organic carbon respiration and the comparability of EC oxygen fluxes with estimates from traditional methods.

2. Materials and Methods

2.1. Study Sites

The study sites were occupied during cruises of the R/V Wecoma in June and August 2009. The stations are designated NH, SH, and HH for their proximity to the Newport (Oregon) hydrographic line and coastal features known as Strawberry Hill and Hecata Head, respectively [Grantham et al., 2004]. They were located near the 80 m isobath in low-relief areas of sandy sediments at approximately 44.65°N, 124.30°W; 44.24°N, 124.32°W; and 43.93°N, 124.25°W, respectively (Figure 1).

2.2. BOXER: A Lander for Measuring Benthic Oxygen Exchange Rates by Eddy Correlation Together With Complementary Benthic Boundary Layer Information

The autonomous benthic lander system for eddy correlation measurements, developed at Oregon State University, is specifically tailored for the dynamic shelf environments of the NE Pacific and deployments from regional or intermediate-scale research vessels. This Benthic Oxygen Exchange Rate (BOXER) lander (Figure 2) has the following principal components: (1) a sturdy, lead-weighted, wide-based frame (height 1.8 m, width 2.3 m) as a stable support platform for the instrumentation even under energetic waves and currents; (2) an acoustic velocimeter (6 MHz, Nortek Vector, with a fixed 3-D probe) for fast (up to 64 Hz) 3-D velocity measurements at a fixed position 10–20 cm above the seafloor; (3) a high-resolution autozeroing amplifier (developed at the Max Planck Institute for Marine Microbiology and produced by Unisense A/S) that couples to a microelectrode for fast low-noise O$_2$ measurements without flow sensitivity; (4) a time-lapse digital still camera and
configured by the Nortek Vector was used to log all data as originally (256 MB), and (7) an Aanderaa O2 optode (model 4175) for
pack), sensor synchronizing, calibration, and data logging
oped by Unisense A/S) for deployment programming, power
deployments) also incorporates (6) a controller unit (devel-
ument, and (b) an enlarged view of the Vector probe posi-
Figure 2. (a) Photo of the BOXER lander during deploy-
 strobe (Insite Pacific, Scorpio) with a counterbalancing vane
 on a rotating bearing assembly for observing the seafloor
areas contributing to the flux; and (5) a light level and
temperature-depth sensor (Wildlife Computers, MK-9) for
independent near-bottom measurements (mounted on top of
the camera vane).
[8] A newer EC measurement system (used for one of three
deployments) also incorporates (6) a controller unit (devel-
oped by Unisense A/S) for deployment programming, power
(12V, 18 h capacity by way of a rechargeable Li-ion battery
pack), sensor synchronizing, calibration, and data logging
(256 MB), and (7) an Aanderaa O2 optode (model 4175) for
independent O2 monitoring.
[9] Prior to the introduction of the Unisense controller unit,
the Nortek Vector was used to log all data as originally
configured by Berg et al. [2009].
[10] BOXER was deployed by lowering with Spectra
synthetic fiber line (5/8") unwrapped from a winch drum and
by releasing spar and surface buoys with an ~2:1 ratio of line
length to water depth. Recovery occurred by picking up the
buoys and using the winch to haul in the line and lander.
The EC instrumentation was programmed to collect data at
64 Hz in 15 min bursts with 5 min between bursts. Initial and
final bursts (i.e., those that included measurements <15 min
before or after BOXER touched down or left the bottom)
were excluded from reported data sets.

[11] The O2 microelectrode readings were stored by time
(7) as counts (cts), which were converted to O2 concentra-
tions according to

\[O_{2t} = (\text{cts}_0 - \text{cts}) \times O_{2BW}/(\text{cts}_0 - \text{cts}_0). \]

where \(\text{cts}_0 \) represents an average of predeployment readings
of the mounted sensor when dipped in a chilled (~10°C)
anoxic 10% solution of 1 M Na ascorbate and 0.5 M NaOH
[Andersen et al., 2001] (i.e., the zero calibration), and \(\text{cts}_0 \)
equals an average set of counts recorded simultaneously
with an independent measurement of the bottom water O2
concentration (\(O_{2BW} \)). In this study all \(O_{2BW} \) values were
assessed by Winkler titrations of triplicate water samples
collected within 4 m of the bottom using a conductivity-
temperature-depth (CTD) probe rosette (Seabird SBE 911
Plus), and \(\text{cts}_0 \) values were calculated from the average
readings during the 15 min burst coinciding with the time
of bottom water sampling.

[12] It is a unique capability of the autozeroing amplifier to
measure the constant (or DC) component of the O2 signal
over a preset period at the beginning of each burst, typically
30 s, and then for subsequent readings to subtract this signal
from the total and amplify the difference 10 times, creating a
fluctuating (or AC) signal. Both the total and amplified AC
signals are recorded as counts. We derived \(O_{2t} \) using the
more sensitive AC records. All O2 and velocity time series
were filtered of outliers (representing usually <1% of all
measurements) using a phase-space method adapted from
Goring and Nikora [2002] and replaced with points based on
a spline fit to adjacent data. These “cleaned” velocity and O2
time series were then reduced from 64 to 16 Hz by computing
sequential four-point averages to filter out high-frequency
noise.

[13] Another parameter measured by the Vector ADV is
near-bottom pressure. Pressure time series were used to
extract surface wave characteristics based on finite-depth
linear water wave theory [Dean and Dalrymple, 1992].
Computations were carried out in the frequency domain after
applying a low-pass filter to the pressure spectrum with
a cutoff frequency that corresponds to the shortest wave
that can still be observed by the pressure sensor (defined by
linear wave water theory as \(h/L = 1/2 \), where \(h \) is the depth
of the sensor and \(L \) is the wavelength associated with a
wave at the cutoff frequency). All computations described
in this and following sections were executed using MatLab
(Mathworks®).

2.3. EC Oxygen Flux Analysis Techniques

[14] The benthic EC oxygen flux method pioneered by
Berg et al. [2003, 2009] relies on assumptions of oxygen
conservation in a control volume bounded below by the
seafloor and above by the intersection of the measurement
point (\(z_m \)) with an \(x-y \) coordinate plane that is parallel with the
seafloor [Hume et al., 2011]. The three-dimensional tracer
conservation equation for this volume and the simplifying
assumptions used in the EC technique to derive a represen-
tation of the seafloor O2 source or sink are described by
Lorrai et al. [2010], but can also be formulated from theo-
retical considerations given in papers such as those by
Finnigan [1999] and Feigenwinter et al. [2004].
[15] To evaluate EC data sets, we first remove segments of clearly anomalous data. These segments may be over a few minutes up to an entire burst. Targeted anomalies are intervals with unusually large vertical velocities or what appear as isolated sharp dips in O$_2$ followed by a slower return to baseline O$_2$ readings. The depression in the O$_2$ signal may be explained by marine snow or other suspended material temporarily adhering to the microelectrode tip. The third type of anomaly arises when O$_2$ shifts abruptly from having a level mean to an increasing or decreasing trend, or vice versa, within a burst. Such shifts suggest short periods of microelectrode instability or a changing bottom water O$_2$ profile.

[16] A following step in the EC analysis is separating the velocity vectors and concentration measurements into time-average and fluctuating components (Reynolds decomposition) [Lee et al., 2004; Lorrai et al., 2010]. Herein, we define the time-average component to correspond to the mean over the entire deployment and further separate the fluctuating component into a low-frequency variation and higher-frequency variability (which are presumably due to waves and turbulence). Hence, the total time series for O$_2$ concentration, for example, is then expressed as $c(t) = \bar{c} + c(t) + c'(t)$. Velocity components are decomposed in a similar fashion with the conventional notation of an oversize to denote the time average and a prime to denote high-frequency fluctuating components. The low-frequency component is influenced by the length and separation of individual data bursts and identified using a detrending method, and the high-frequency fluctuating component can then be obtained by subtracting the identified mean and low-frequency components from the total signal. Three detrending methods are used to define the low-frequency fluctuating component and are compared below. These are (1) linear detrending (LD), (2) a centered running average (RA) (see definitions given by Sakai et al. [2001] and Lee et al. [2004]), or (3) a low-pass frequency filter (FF) [see Bendat and Piersol, 1971, chapter 9]. The latter (FF) filter has some similarities to the RA method, but it has the advantage of allowing for a precise understanding of the frequency content of the motions that are considered as part of the high-frequency components, and it does not have computational edge effects at the beginning and ends of bursts [Bendat and Piersol, 1971]. We note here that, by definition, the average values (over the whole deployment) of the fluctuating components are zero; hence $\bar{c} = \bar{v} = 0$ holds. Further, the average over individual bursts of the high-frequency fluctuating component also vanishes by definition.

[17] The resulting net vertical flux (averaged over the entire deployment) is

$$\text{flux} = \avg{\bar{w}c'} = \avg{\bar{w}c} + \avg{\bar{w}c't} + \avg{w'c'}. \quad (2)$$

When $\bar{w} \neq 0$, it is generally assumed that vertical advection ($\bar{w}c$) does not represent a component of the seafloor exchange rate because this transport is balanced simultaneously by transient horizontal advection events [Finnigan et al., 2003]. Unfortunately, this balance cannot be constrained from the information available from a single point in the benthic boundary layer. The practice of coordinate rotation so that the mean velocity defines the x axis (and therefore the rotated velocities are such that $\bar{v}_x = \bar{w}_x = 0$) is used instead by some authors to mathematically force vertical advection terms to zero. This can be appropriate if horizontal flow is strong and consistently at an angle relative to the seabed. The complication is with complex flow or short averaging periods (relative to the periods of all contributing eddies); these rotations may unpredictably fold horizontal components into the eddy flux. Furthermore, rotation procedures may be applied so that $\bar{v}_x = \bar{v}_y = 0$ for each sampling burst, creating multiple coordinate systems, or applied once with reference to the full data record. We examine possible biases generated or removed by different rotation methods as part of the results.

[18] The low-frequency flux ($\avg{\bar{w}c't}$) is generally nonzero and, in our case, is defined to result from variability at the scales of hours to days. For example, tidal variability or changes in the ocean properties due to upwelling fronts will contribute to this flux. It is assumed that a sufficiently long deployment period would capture multiple cycles of these low-frequency motions and would therefore lead to a low-frequency flux that averages to zero in the long term. We note that the deployments that will be discussed herein are not of such durations, and nonzero low-frequency fluxes are observed.

[19] Finally, the flux $\avg{\bar{w}c'}$ in equation (2) represents all dynamic processes that contribute a net nonzero flux of oxygen into the seabed where it is consumed. Turbulence in the water column undoubtedly contributes greatly to this net flux, but recent work [Huettel and Webster, 2001; Precht et al., 2004] has suggested that processes related to surface wave motions or flow-induced pressure gradients around small-scale sediment topography may also contribute. For example, wave orbital velocities near a rippled sandy bed may lead to significant flow velocities through the bed, allowing higher rates of oxygen consumption to occur and water of lower O$_2$ concentration to be returned to the water column [Reimers et al., 2004].

[20] However, net flux computations across wave frequencies can be significantly biased if the observation platform is not oriented perfectly in the vertical direction. Any rotation errors will result in components of the large horizontal velocities associated with surface waves being mapped onto the vertical velocities [Shaw and Trowbridge, 2001]. Methods for removing the wave flux components have been under development [e.g., Shaw and Trowbridge, 2001], but cannot be applied here because they require the presence of multiple velocity sensors. Further, these methods remove the entire wave contribution, not distinguishing between the real wave contribution and the apparent wave bias due to rotation errors.

[21] Given our interest in the net vertical flux and the possibility for an actual wave contribution, we instead consider utilizing information about the waves from the Vector's colocated pressure sensor to adjust the orientation of the observations. In particular, the criteria established were first to rotate in the horizontal so the horizontal wave signal is primarily contained in the v velocities. Hence, the x axis is aligned with the general propagation direction of the waves. Next, a vertical rotation is established, minimizing the difference between the observed vertical velocity (at the wave frequencies) and the vertical velocity derived via linear water wave theory from the pressure signal. For our data sets, this amounts to a minimization of the wave signal in the vertical velocity component.
Table 1. Characteristics of Bottom Water Samples

<table>
<thead>
<tr>
<th>Date and Local Time</th>
<th>Height Above Bottom (m)</th>
<th>Nitrate (µM)</th>
<th>Nitrite (µM)</th>
<th>Phosphate (µM)</th>
<th>Silicate (µM)</th>
<th>Temperature (°C)</th>
<th>Sigma-Theta (kg/m³)</th>
<th>Salinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH 7 Jun 2009, 2108</td>
<td>2.4</td>
<td>94.5 ± 0.2</td>
<td>0.6</td>
<td>9.45 ± 0.00</td>
<td>0.2</td>
<td>7.04</td>
<td>33.92</td>
<td>7.03</td>
</tr>
<tr>
<td>NH 20 Aug 2009, 2045</td>
<td>2.3</td>
<td>80.3 ± 0.3</td>
<td>0.3</td>
<td>4.58 ± 0.03</td>
<td>0.1</td>
<td>6.8</td>
<td>33.92</td>
<td>7.04</td>
</tr>
<tr>
<td>SH 13 Jun 2009, 1808</td>
<td>3.8</td>
<td>44.8 ± 0.8</td>
<td>0.2</td>
<td>5.58 ± 0.32</td>
<td>0.1</td>
<td>7.75</td>
<td>34.8</td>
<td>7.04</td>
</tr>
<tr>
<td>SH 18 Aug 2009, 1812</td>
<td>2.6</td>
<td>40.8 ± 0.2</td>
<td>0.1</td>
<td>5.58 ± 0.32</td>
<td>0.1</td>
<td>7.75</td>
<td>33.92</td>
<td>7.04</td>
</tr>
<tr>
<td>HHc 11 Jun 2009, 1806</td>
<td>2.7</td>
<td>62.0 ± 0.1</td>
<td>0.1</td>
<td>6.58 ± 0.32</td>
<td>0.1</td>
<td>7.75</td>
<td>33.92</td>
<td>7.04</td>
</tr>
<tr>
<td>SH 21 Aug 2009, 1953</td>
<td>1.3</td>
<td>62.1 ± 0.2</td>
<td>0.1</td>
<td>6.58 ± 0.32</td>
<td>0.1</td>
<td>7.75</td>
<td>33.92</td>
<td>7.04</td>
</tr>
<tr>
<td>NHc 18 Aug 2009, 2012</td>
<td>2.6</td>
<td>62.0 ± 0.1</td>
<td>0.1</td>
<td>6.58 ± 0.32</td>
<td>0.1</td>
<td>7.75</td>
<td>33.92</td>
<td>7.04</td>
</tr>
</tbody>
</table>

All discrete analyses are from three individual Niskin bottles. Times based on first bottle mark. Uncertainties represent ±1 SD.

The resulting flux term \(\bar{w}c' \) is herein referred to as the EC oxygen flux or eddy flux. This net flux will contain contributions from turbulence as well as from wave-induced processes. These are discussed in detail as part of the results. To facilitate some understanding of the contribution of the two processes, the EC flux can also be expressed as

\[
\bar{w}c' = \int_{0}^{f_{\text{max}}} \text{Co}_{w/c}(f)df,
\]

where \(\text{Co}_{w/c} \) is the cospectrum of \(w'c' \), \(f \) is the frequency, and \(f_{\text{max}} \) is the upper frequency limit constrained by the sampling frequency [Berg et al., 2003; Lorrai et al., 2010]. The sign convention is that vertical fluxes out of the base of the control volume and into the seabed are negative. Generally, in this study we average a series of eddy flux estimates from data records of 14 or 14.5 min (individual 15 min bursts minus the autozeroing amplifier adjust time), resulting in a frequency resolution of either 0.0012 or 0.0011 Hz. Co spectra are calculated for each burst using the Fourier transform of the fluctuating components \(w' \) and \(c' \) utilizing a simple Dirichlet window. The cospectrum is then computed as the product of the transformed \(w' \) and the conjugate of the transformed \(c' \) with no further band averaging.

2.4. Complementary Bottom Water and Sediment Measurements

As noted previously, we routinely conducted a CTD-rosette cast during each BOXER deployment. The CTD package was equipped with additional sensors, including probes for \(O_2 \) (SBE 43) and transmissometry (Chelsea/Seatech/Wetlab CStar). The CTD was lowered to within 4 m of the seabed and three 10 L Niskin bottles tripped in a rapid sequence (Table 1). Generally, each of these bottles was subsampled aboard ship for \(O_2 \), nutrients, and particulate organic C and N (POC/PN) concentrations. The CTD sensor data were processed using the Sea-Bird SEASOFT software and laboratory calibration files to obtain 1 dbar average values of pressure, temperature, conductivity, salinity, density, dissolved \(O_2 \) concentration, and beam transmission. Oxygen concentrations were measured by whole bottle Winkler titration of 125 ml samples using an amperometric method [Culberson et al., 1991] for detecting the triiodide reaction end points. Nutrient samples were stored in acid-washed Nalgene™ 60 ml HDPE bottles at −20°C until analyzed using standard colorimetric methods as adapted for autoanalyzers [Atlas et al., 1971; Gordon et al., 1995]. The POC/PN water samples (1–1.5 L) were immediately filtered through precombusted (at 400°C for 4 h) 25 mm Whatman™ G/F filters. These filters were frozen at sea then later exposed to acid fumes in the laboratory for 24 h to remove inorganic carbon. Dried filters were analyzed using a Carlo Erba NA-1500 elemental analyzer [Verardo et al., 1990].

Sediment cores (~50 cm long) were recovered with a frame-mounted hydraulically dampened gravity corer designed to sample sandy sediment without pore water drainage and with little disturbance to the sediment-water interface. The acrylic core tubes (ID 10.5 cm) were 94 cm in length, and sediment cores were retained by a spring-loaded-core catcher- PVC disk that supported an O-ring seal against the tube walls. A compressed air-powered core extruder was used in a refrigerated van (8°C ± 2°C) to extrude the sediments. For some cores, samples were collected in 1 cm
(from 0 to 5 cm) and 2 cm intervals (from 5 to 52 cm) that were then subdivided for subsequent analyses. For other cores, only the top ~20 cm was extruded into a 9.5 cm ID, 30 cm long acrylic core tube. This sediment was covered with seawater from the study site and saved for measurements of composite permeability in a shore-based cold room ($T = 10^\circ C \pm 2^\circ C$) using a falling-head permeameter designed after Roche et al. [2005].

[25] Depth profiles of excess 210Pb activity and sediment organic C (SOC) and total N were measured after subsampled sediments were dried at 60°C for approximately 48 h and finely ground by mortar and pestle. Approximately 20 g of prepared sediment was placed in one of two Canberra GL2020RS LEGe planar (2000 mm2) γ ray detectors and counted for 24 h to determine activities of 210Pb and 214Pb (used to calculate supported 210Pb) from counts at 46.5 and 661.6 keV [Wheatcroft and Sommerfield, 2005]. SOC and total N concentrations were measured by automated combustion (Carlo Erba NA1500 Series 2 elemental analyzer) with acetanilide as the calibration standard after carbonates were removed from ground and weighed samples by concentrated HCl fumigation (modified from Verardo et al. [1990]). Chlorophyll and phaeopigment concentrations were determined fluorometrically after frozen sediment samples (2 cm3) were extracted with 90% acetone for 24 h at 4°C in the dark (Turner Designs AU10) [Strickland and Parsons, 1972]. Estimates of the weight percent of fines (or weight percent of silt and clay) were determined based on Stokes law of particle-settling velocity. Subsamples (2 cm3) from each sediment layer were placed in 15 cm3 BD Falcon conical centrifuge tubes and covered with 3 cm of filtered seawater from bottom water POC collections. After vigorous shaking, each sample was allowed to stand undisturbed for 10 s, the suspension was pipetted off, and suspended particles were collected on a preweighed filter (25 mm Whatman GF/C). This process was repeated until the water appeared clear, usually five times per sample. The filter was then rinsed with deionized water, wrapped securely in foil, and stored in a −80°C freezer. At a later date, filters and the sand fraction remaining in the tubes were dried and weighed.

2.5. Traditional Chamber and Microprofiler Methods for Estimating Benthic Oxygen Flux

[26] During each research cruise, the field plan was to assess benthic O$_2$ fluxes by three in situ methods: EC, benthic chambers, and microelectrode profiles. Thus, two additional landers were used in conjunction with BOXER and the hydrographic measurements. Not all lander deployments recovered useful data. The benthic chamber lander was deployed as a free vehicle with releasable ballast. This lander inserted a pair of 20.3 \times 20.3 cm box-shaped stainless steel chambers into the sediment. Each Teflon-lined benthic chamber was equipped with an Aanderaa model 4330 O$_2$ optode and eight spring-actuated syringes for withdrawing time series water samples. The optode’s output (0–5 V) was recorded every 5 min by the control electronics for the lander. Flux chambers were gently stirred by a 4 cm \times 1 cm Teflon stir bar supported under the lid and driven by a magnetically coupled motor at about 1 Hz. Further, description of the flux chambers are given by Devol and Christensen [1993] and Holcombe et al. [2001]. Deployment times varied from 12 to 14 h, including delays between landing, chamber implantation, and lid closure.

[27] The microprofiler was mounted at the center of a simple aluminum-frame tripod lander (1.5 m pod center to pod center by 1.6 m high) which was deployed in the same way as BOXER. This microprofiler has channels for four O$_2$ microelectrodes and a four-wire resistivity sensor [Reimers and Glud, 2000]. The sensors were mounted in silicone-oil-filled holders screwed down onto a slotted anodized aluminum ring and connected by cables to a controlling electronics package. During this study the microprofiler was programmed to move the sensors vertically in steps of 0.125 mm, to wait 4 s at each position, then to record from each sensor five readings that were later averaged. Oxygen microelectrodes (Unisense Ox-25) were calibrated assuming a linear slope and two calibration points: an average bottom water reading from 5 to 10 mm above the sediment-water interface and an average background reading in anoxic sub-surface sections of the sediment. Only two O$_2$ microelectrodes were used on most deployments because of a high rate of microelectrode breakage during these cruises (attributed to the activities of Dungeness crabs seen often in sea bottom photos). The resistivity sensor was made by embedding a four-conductor copper ribbon cable in epoxy within a plastic tube and then beveling the tip into the shape of a wedge to expose the wires along a 6 mm wide leading edge. It had a depth resolution of the order of 2 mm and thus began to detect a change in resistance before encountering the sediment-water interface [Martin et al., 1991]. Resistivity measurements in the sediment were converted to the sediment formation factor F by dividing each measurement by an average resistivity reading in the bottom water.

3. Results

3.1. Water Column and Eddy Correlation Measurements

[28] Hydrographic measurements made to coincide with the different lander deployments showed hypoxic conditions (O$_2$ < 64 $\mu $M or 1.43 ml/L) in the bottom waters of the midshelf region of the Oregon coast in both June and August 2009. These waters were also nutrient and particle rich with T, S, and $\sigma$$_f$ ranges of 7°C–8°C, 33.84–33.92, and 26.4–26.6 kg m$^{-3}$, respectively, properties characteristic of the bottom mixed layer (Table 1 and Figure 3) [Perlin et al., 2005]. EC measurements were made successfully at the NH and HH sites in June and the SH site in August. These measurements occurred over 11–15 h (Figures 4–6). Changes in water properties on these time scales can be attributed largely to cross-shelf motion of bottom waters in response to tidal forcing and changes in upwelling conditions [Perlin et al., 2005]. Long-period O$_2$ variations were greatest within the SH record and were measured by both the EC microelectrode and independent optode (Figure 5). A pronounced bottom nepheloid layer was evident in June at both the SH and HH sites. The layer was detected by beam transmissivity values <60% near the seafloor and elevated concentrations of POC and PN (Table 1). After clipping problematic intervals from the EC records of Figures 4–6 (e.g., unusually large vertical velocities in the SH data set 72 to 75 min into the record), 94%, 99.5%, and 91% of the data remained for analysis for NH, SH, and HH, respectively.
3.2. Effects of Detrending Methods on Eddy Flux Determinations

As noted earlier, different computational and coordinate frame rotation methods are in common use in atmospheric eddy flux studies, and these same methods are available when investigating benthic boundary layer fluxes. Of major concern is how to separate low-frequency oscillations that may bias flux calculations from those that contain significant flux contributions [Finnigan et al., 2003]. In addition, a unique problem in benthic studies is how to consider variable surface and internal wave motions that can dominate the turbulence-induced component of the measured covariance [Shaw and Trowbridge, 2001].

The impact of detrending methods to isolate eddy components was first evaluated without any coordinate rotation. In Figure 7a, mean Oregon shelf eddy fluxes calculated after applying a RA filter to every burst period are normalized to the mean flux calculated from the same data after LD. The normalized flux is shown as a function of the RA filter period, which was increased from 0.5 to 14 min. The outcome is different between data sets. The normalized flux curve from site SH flattens near 1.0 when a 3 min or
longer RA filter is applied, but the curves from NH and HH generally increase. This shows that detrending by LD will often give larger-magnitude overall flux estimates until the RA period approaches the length of the data burst.

Both the RA and FF detrending methods indicate greater flux contributions at frequencies <0.005 Hz within the NH and HH data sets compared with SH (Figures 7a and 7b). Cumulative cospectra of $w'c'$ examined on a burst-by-burst basis show that contributions to eddy fluxes at frequencies <0.005 Hz are fairly persistent at HH and NH but arise more intermittently within the record from SH. Oscillations occurring on time scales of a few minutes to tens of minutes are consistent with packets of nonlinear internal waves that are geographically and temporally variable sources of turbulent mixing on the Oregon shelf [D'Asaro et al., 2007]. Nonlinear internal waves have large amplitudes and may travel long distances across the shelf, causing a net cross-shelf transport of particles [Bogucki and

Figure 5. The full EC time series from station SH. The Unisense controller system with optode was used during this deployment. (a, b) Velocity, (c) pressure, and (d) oxygen microelectrode data are reduced to 16 Hz. Optode oxygen measurements (in Figure 5d) are at 1 Hz, and temperature readings from the Mk-9 sensor (in Figure 5c) are at 0.017 Hz.

Figure 6. Same as Figure 4 except the data are for HH.
Figure 7. (a) Average fluxes derived after detrending using a centered running average (RA) with increasing filter period normalized to the flux derived after linear detrending (LD). (b) Fluxes after applying a low-pass frequency filter (FF) of increasing cutoff frequency normalized to the flux derived after LD. Each point represents an average from all data bursts after removing some anomalous data segments and without rotation of axes (see text).

Redekopp, 1999]. These phenomena may also explain why in some bursts the lower-frequency portion of cospectra reduces rather than enhances the overall eddy flux estimate of O2 consumption, and this makes the outcome very sensitive to detrending methods. An example is illustrated by data from 440.5 to 455 min into the HH time series. The eddy flux derived from this data segment equals \(-2.85, -7.8, -8.6\), or \(-9.2\) mmol m\(^{-2}\) d\(^{-1}\), depending on whether detrending is by LD, 0.002 Hz FF, 8.33 min RA, or 4 min RA computations, respectively (Figure 8, curve set 1). In contrast, for the burst from 280.5 to 295 min, the same series of fluxes equals \(-22.4, -12.5, -16.8\), and \(-13.1\) mmol m\(^{-2}\) d\(^{-1}\), in part because oscillatory trends in this data segment appear to have a period greater than the burst duration (Figure 8, curve set 2).
−10° to 16° and most bursts showing an enhanced wave signal in w_R. Instead, what seems most appropriate is to rotate the coordinates using information extracted from u, v, w and the pressure signal to minimize any wave bias in w_R (as described in section 2.3). The resulting q_V angles are small, vary little from burst to burst ($/C_0 2.1°/C_6 0.7°$, $/C_0 1.5°/C_6 2.9°$, and $0.9°/C_6 0.6°$ for NH, SH, and HH, respectively), and are close to the compass angles. The highest variability is observed at SH, where the horizontal rotation angle varies also, likely because of the turbulent nature of the velocities (also see section 3.4). A comparison of eddy fluxes derived with and without this final rotation is presented in Table 3. As rotation effects are not independent of detrending, fluxes predicted after this rotation are also compared with LD, RA, and FF methods. We highlight the combination of linear detrending with the rotation to minimize wave biasing as the "preferred" to represent the strength of the seafloor sink because with these <15 min burst segmented data sets this treatment both retains more low-frequency contributions within the eddy flux (i.e., last term of equation (2)) and minimizes wave contamination. In effect, we are making the judgment that because data bursts were <15 min and separated by 5 min gaps in time, the best method to retain real wave fluctuations with periods of several minutes to hours is with linear detrending. If the data had been collected in longer bursts or a long-duration continuous mode instead, a low-pass frequency filter would probably be preferable because it could be adjusted to precisely remove very low frequencies (e.g., <0.0001 Hz; in other words, fluctuations due to long-period exchanges such as tides).

Figure 9 shows the burst-to-burst variability of the preferred flux estimates, reflected as ±1 standard deviation (SD) in Table 3. Cumulative averages in Figure 9 illustrate that several hours of measurements are needed to approach a consistent flux estimate. The drivers of the apparent variability on shorter time scales are discussed in section 4.

3.4. "Real" Surface Wave Contributions to Eddy Fluxes

The significant wave heights (H_{sig}) and average wave periods (T_p) derived from the pressure records of each EC time series were typical for late spring and summer conditions (Table 2). Surface wave observations from the National Data Buoy Center (NDBC) buoy off Newport (buoy 46050) indicate that during the HH deployment, waves were small (significant wave height $H_{\text{sig}} \sim 0.8$ m), and the waves were characterized by swell (peak period $T_p \sim 16$ s) from the southwest. Similar waves were present during the NH deployment; however, in addition, NDBC data also give an indication of a secondary sea peak at around an 8 s period. In contrast, during the SH deployment, short-period waves ($T_p \sim 8$ s) were dominant, and associated wave heights were larger ($H_{\text{sig}} \sim 2$ m) and approaching from the northwest.

Table 2. Means ±1 SD (Minimum to Maximum) of Vertical and Horizontal Velocities (cm s$^{-1}$) and Wave Conditions Derived Over Each Data Burst and Averaged Across All Burstsa

<table>
<thead>
<tr>
<th>Site</th>
<th>Number of Bursts</th>
<th>Mean Vertical Velocity \bar{w}</th>
<th>Mean Velocityb (cm/s)</th>
<th>H_{sig} (m)</th>
<th>T_p (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH</td>
<td>35</td>
<td>-0.51 ± 0.30 (−0.98 to +0.03)</td>
<td>5.8 ± 2.7 (3.0 to 10.4)</td>
<td>0.45 ± 0.03</td>
<td>13.9 ± 1.6</td>
</tr>
<tr>
<td>SH</td>
<td>44</td>
<td>-0.40 ± 0.19 (−0.83 to +0.04)</td>
<td>3.8 ± 1.2 (0.8 to 6.7)</td>
<td>0.44 ± 0.10</td>
<td>11.1 ± 1.2</td>
</tr>
<tr>
<td>HH</td>
<td>45</td>
<td>-0.39 ± 0.17 (−1.05 to −0.12)</td>
<td>4.1 ± 2.5 (0.3 to 13.4)</td>
<td>0.60 ± 0.08</td>
<td>15.3 ± 0.9</td>
</tr>
</tbody>
</table>

aSignificant wave heights (H_{sig}) and periods (T_p) reflect only those surface waves sensed near the seafloor.

bAbsolute value of resultant of u, v, and w at measuring height above bottom of Vector.
Table 3. Comparison of the Effects of Coordinate Frame Rotation (Each Period) and Mean Removal Method on O₂ Eddy Fluxes Derived From Measurements in This Study

<table>
<thead>
<tr>
<th>Site and Number of Bursts</th>
<th>Rotation</th>
<th>Mean Removal</th>
<th>Total Eddy Flux ($w'c'$)</th>
<th>Wave Frequency Eddy Flux</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH, $n = 33$</td>
<td>none</td>
<td>LD</td>
<td>-4.4 ± 3.1</td>
<td>-1.26 ± 0.99</td>
</tr>
<tr>
<td></td>
<td>$\overline{w} = \overline{w}_c = 0$</td>
<td>LD</td>
<td>-1.7 ± 3.5</td>
<td>-0.69 ± 1.15</td>
</tr>
<tr>
<td></td>
<td>Minimize wave bias</td>
<td>LD</td>
<td>-3.2 ± 3.2</td>
<td>-0.53 ± 0.94</td>
</tr>
<tr>
<td></td>
<td>Minimize wave bias</td>
<td>RA (8.33 min)</td>
<td>-3.0 ± 3.2</td>
<td>-0.53 ± 0.95</td>
</tr>
<tr>
<td></td>
<td>Minimize wave bias</td>
<td>RA (4 min)</td>
<td>-2.4 ± 2.5</td>
<td>-0.53 ± 0.95</td>
</tr>
<tr>
<td></td>
<td>Minimize wave bias</td>
<td>FF (0.002 Hz)</td>
<td>-2.4 ± 3.0</td>
<td>-0.53 ± 0.99</td>
</tr>
<tr>
<td></td>
<td>Minimize wave bias</td>
<td>FF (0.005 Hz)</td>
<td>-1.9 ± 2.5</td>
<td>-0.53 ± 0.99</td>
</tr>
<tr>
<td>SH, $n = 44$</td>
<td>none</td>
<td>LD</td>
<td>-4.3 ± 4.1</td>
<td>-0.53 ± 0.74</td>
</tr>
<tr>
<td></td>
<td>$\overline{w} = \overline{w}_c = 0$</td>
<td>LD</td>
<td>-2.0 ± 6.3</td>
<td>-0.37 ± 0.90</td>
</tr>
<tr>
<td></td>
<td>Minimize wave bias</td>
<td>LD</td>
<td>-3.9 ± 3.9</td>
<td>-0.52 ± 0.65</td>
</tr>
<tr>
<td></td>
<td>Minimize wave bias</td>
<td>RA (8.33 min)</td>
<td>-3.8 ± 3.6</td>
<td>-0.52 ± 0.65</td>
</tr>
<tr>
<td></td>
<td>Minimize wave bias</td>
<td>RA (4 min)</td>
<td>-3.7 ± 2.9</td>
<td>-0.52 ± 0.65</td>
</tr>
<tr>
<td></td>
<td>Minimize wave bias</td>
<td>FF (0.002 Hz)</td>
<td>-3.4 ± 4.6</td>
<td>-0.53 ± 0.68</td>
</tr>
<tr>
<td></td>
<td>Minimize wave bias</td>
<td>FF (0.005 Hz)</td>
<td>-3.5 ± 3.4</td>
<td>-0.53 ± 0.68</td>
</tr>
<tr>
<td>HH, $n = 42$</td>
<td>none</td>
<td>LD</td>
<td>-15.0 ± 16.2</td>
<td>-4.1 ± 4.3</td>
</tr>
<tr>
<td></td>
<td>$\overline{w} = \overline{w}_c = 0$</td>
<td>LD</td>
<td>-19.8 ± 32.5</td>
<td>-12.2 ± 17.6</td>
</tr>
<tr>
<td></td>
<td>Minimize wave bias</td>
<td>LD</td>
<td>-9.8 ± 14.9</td>
<td>-2.3 ± 3.8</td>
</tr>
<tr>
<td></td>
<td>Minimize wave bias</td>
<td>RA (8.33 min)</td>
<td>-10.0 ± 13.5</td>
<td>-2.3 ± 3.8</td>
</tr>
<tr>
<td></td>
<td>Minimize wave bias</td>
<td>RA (4 min)</td>
<td>-8.7 ± 11.6</td>
<td>-2.3 ± 3.8</td>
</tr>
<tr>
<td></td>
<td>Minimize wave bias</td>
<td>FF (0.002 Hz)</td>
<td>-9.0 ± 12.1</td>
<td>-2.3 ± 3.8</td>
</tr>
<tr>
<td></td>
<td>Minimize wave bias</td>
<td>FF (0.005 Hz)</td>
<td>-8.1 ± 10.6</td>
<td>-2.3 ± 3.8</td>
</tr>
</tbody>
</table>

All fluxes are burst averages in mmol m⁻² d⁻¹ (±1 SD to reflect the variability between individual bursts that is due to the flow dynamics). Here 6% of the record from NH, 0.5% from SH, and 9% from HH were excluded from these analyses for reasons given in the text. Boldface values are preferred for reasons given in the text. LD, linear detrending; RA, running average filter; FF, a low-pass frequency filter.

Figure 9. Eddy fluxes of O₂ (mmol m⁻² d⁻¹) by burst at (a) NH, (b) SH, and (c) HH. These estimates were derived after rotating coordinates to minimize wave biasing and using linear detrending. The dashed red lines represent averages accumulated with increasing number of bursts.
However, at the water depth of the EC measurements (80–85 m), waves shorter than approximately 10 s cannot be observed because of the depth attenuation associated with surface gravity waves.

The EC observations show that during the HH (and NH) deployments, oscillations transferred from passing surface waves are most pronounced in u and v. Horizontal velocities derived from the pressure observations are consistently in good agreement with the measured velocities (r^2 values of 0.9 and 0.8 for HH and NH, respectively), indicating that the observed motions are indeed mostly associated with surface gravity waves, with the remaining energy likely due to turbulent motions. Signals associated with the surface gravity waves are also visible in O$_2$ time series. Oscillations were much less sinusoidal during the SH deployment, and this is apparent in spectral analyses (Figure 10). The observed motions at wave frequencies at SH do not appear as organized swell with a clear propagation direction (r^2 values between pressure-derived velocities and observations were only 0.2, with an equally large standard deviation from burst to burst). Further, frequency spectra derived from the pressure observations clearly indicate that the peak wave frequency cannot be captured because the waves are much shorter during this deployment and hence cannot be observed at these water depths. Instead, the motions measured during the SH deployment are likely primarily due to turbulence, leading to relatively large amplitude fluctuations in w. Without rotation, contributions to total fluxes at NH and HH are clearly heightened at wave frequencies (Figure 7b). After rotation to remove wave biases, the contributions from the dominant surface wave frequency bands to the total EC oxygen fluxes are reduced but still equal to a significant 13%–23% overall (Table 3). These were calculated over a 0.05 Hz frequency band centered at $1/T_p$ (as in Table 2). Mean currents were variable in direction with speeds of <14 cm/s (Table 2).

3.5. Comparability of Eddy Fluxes With Chamber and Microprofile Methods

Confidence in the validity of equating eddy fluxes to the seafloor sink for O$_2$ can best be obtained by comparison with established benthic flux methods and by considering the relative strengths and weaknesses of all methods. In this study we were successful in determining alternative estimates of the benthic O$_2$ flux by deploying a benthic chamber lander and a microprofiler lander at both NH and SH, although contemporaneous measurements by all three methods were achieved only at SH in August (Table 4). Results of side-by-side chamber incubations over 10 h at SH (Figure 11b) show variant trends, but when the sediment uptake of O$_2$ is estimated from linear fits over the first 180 min, the chamber fluxes are equal to -4.6 ± 0.5 and -7.2 ± 0.7 mmol m$^{-2}$ d$^{-1}$ in June and August, respectively. NH chamber fluxes measured in August were more consistent between chambers (Figure 11a) and equal to -5.8 ± 0.2 mmol m$^{-2}$ d$^{-1}$ (Table 4).

Water-sediment profiles measured in situ at NH and SH with O$_2$ microelectrodes and a resistivity sensor are shown in Figure 12. Although there is only a single O$_2$ profile for each deployment (due to either companion sensor breakage or poor-quality records), we have measured similar profiles at other Oregon shelf stations (C. E. Reimers,
Table 4. Summary of Lander Deployments and Coring Stations From Which Data and Comparative Oxygen Fluxes Are Reported

<table>
<thead>
<tr>
<th>Site</th>
<th>Collection Date, Time, and Type<sup>b</sup></th>
<th>Position</th>
<th>Water Depth (m)</th>
<th>Total or Diffusive Oxygen Flux (mmol m<sup>−2</sup> d<sup>−1</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH</td>
<td>7 Jun 2009, 1921, IMP</td>
<td>44° 39.042′ 124° 17.722′ 82</td>
<td>−1.1</td>
<td></td>
</tr>
<tr>
<td>NH</td>
<td>8 Jun 2009, 1959, BOXER</td>
<td>44° 39.097′ 124° 18.005′ 82</td>
<td>−3.2 (see Table 3)</td>
<td></td>
</tr>
<tr>
<td>HH</td>
<td>11 Jun 2009, 1533, BOXER</td>
<td>43° 55.800′ 124° 14.705′ 80</td>
<td>−9.8 (see Table 3)</td>
<td></td>
</tr>
<tr>
<td>SH</td>
<td>13 Jun 2009, 1458, Chambers</td>
<td>44° 14.033′ 124° 18.924′ 82</td>
<td>−4.6 ± 0.5 (n = 2)</td>
<td></td>
</tr>
<tr>
<td>SH</td>
<td>18 Aug 2009, 1600, BOXER</td>
<td>44° 14.511′ 124° 18.930′ 81</td>
<td>−3.9 (see Table 3)</td>
<td></td>
</tr>
<tr>
<td>NH</td>
<td>20 Aug 2009, 1843, Chambers</td>
<td>44° 139.398′ 124° 18.006′ 82</td>
<td>−5.8 ± 0.2 (n = 2)</td>
<td></td>
</tr>
<tr>
<td>NH</td>
<td>20 Aug 2009, 2022, IMP</td>
<td>44° 139.099′ 124° 17.750′ 81</td>
<td>−2.7</td>
<td></td>
</tr>
<tr>
<td>SH</td>
<td>21 Aug 2009, 1700, Chambers</td>
<td>44° 14.701′ 124° 18.896′ 81</td>
<td>−7.2 ± 0.7 (n = 2)</td>
<td></td>
</tr>
<tr>
<td>SH</td>
<td>21 Aug 2009, 1922, IMP</td>
<td>44° 14.515′ 124° 18.871′ 81</td>
<td>−2.4</td>
<td></td>
</tr>
</tbody>
</table>

^aFour replicate measurements of permeability were made per core. Uncertainties represent ±1 SD.

^bTime given as local time.

Figure 11. Dissolved oxygen concentration versus time in benthic chambers during NH and SH deployments. C1, chamber 1; C2, chamber 2. Oxygen was measured by optodes mounted in the chamber lids. These records start at the time of chamber closure, which occurred 3-5 h after deployment. Chamber fluxes are derived from linear fits to the O₂ consumption over the first 180 min.
unpublished data, 2009), and so have confidence that these are typical for summer hypoxic conditions. The steep interfacial gradients do not indicate any deep O₂ intrusion due to flow- or wave-induced advection and can be used with Fick’s first law as it is often applied to sediments: \(\text{DOU} = -D_o \frac{\partial C}{\partial z} \), where \(D_o \) is the molecular diffusion coefficient for O₂ at in situ temperatures and \(F \) is the formation factor of interfacial sediment [Ullman and Aller, 1982; Schulz, 2006] to derive diffusive O₂ fluxes equal to \(-1.1\), \(-2.7\), and \(-2.4\) mmol m\(^{-2}\) d\(^{-1}\) at NH in June, NH in August, and SH in August 2009, respectively (Table 4). However, we fully expect DOU calculations to underestimate the total flux. As demonstrated by Güss [1998], purely hydrodynamic dispersion can enhance the O₂ uptake near the interface of permeable sediments by several times molecular diffusion without much deepening of the O₂ penetration. These potential effects, in addition to respiration of macrofauna and biological pore water irrigation, imply that both the EC and chamber oxygen fluxes are realistic representations of total oxygen consumption rates.

3.6. Sediment Properties Driving Variability in Eddy Fluxes

The most striking variability in average eddy fluxes derived for the three shelf sites is the greater flux at HH compared with the two sites further north. As water depth, bottom water O₂ concentrations, and temperature were largely consistent during these three deployments and wave conditions were similar between HH and NH, we look to the sediments for another source of the variability. The collection information for sediment cores that were analyzed for this study is presented in Table 4 with measurements of composite permeability (sites NH and SH only). Profiles of sediment properties downcore are displayed in Figure 13. There is little to distinguish the HH site except for its relatively higher percentages of fines and organic carbon content. Concentrations of excess \(^{210}\)Pb are low at all sites (especially in comparison with shelf muds) and indicate that the top ~7 cm of the three sites have comparable histories of winnowing and bioturbation. Chlorophyll-\(a\) is generally enriched at the sediment surface, but chlorophyll-to-phaeophytin molar ratios (averaging \(0.31 \pm 0.12\) and not shown) change little with sediment depth or between cores.

4. Discussion

4.1. Assessment of Fluxes

Although the derivation of benthic fluxes from EC measurements may be described in straightforward steps [e.g., Kuwae et al., 2006; Lorrai et al., 2010], in practice this study shows that not all data sets are simple, and the outcome from EC can be sensitive to the methods used to orient coordinates and split measurements into mean and fluctuating components. On the Oregon continental shelf, because velocities were dominated by wave motions rather than by currents and because measurements were made in a relatively short burst mode, we find that the most defendable fluxes are derived by (1) orienting the coordinate axes to minimize surface wave biasing of the vertical velocity and (2) applying linear detrending methods to retain within the eddy contributions the lowest frequencies sampled per burst (0.0011 Hz in this study). This processing does not remove all the flux contributions at surface wave frequencies (as seen in Figure 10 and Table 3), but what remains is inferred to be due to real wave- or pressure-driven exchange processes that transport bottom water enriched in oxygen into at least the uppermost millimeters of a permeable seabed and oxygen-depleted pore water out [Precht et al., 2004]. With relatively short data bursts (<15 min), the longest-period oscillations that may be incorporated into the EC oxygen flux are on the time scales of internal waves, which are known to enhance turbulence on the Oregon continental shelf [D’Asaro et al., 2007]. Bioirrigation may be another mechanism to produce low-frequency components in O₂.
spectra (Figure 10). Low-pass frequency filter analyses with a cutoff frequency of 0.005 Hz when compared with LD (Table 3) indicate contributions at frequencies of <0.005 Hz carried about 41%, 10%, and 17% of total EC oxygen fluxes assessed from the NH, SH, and HH deployments, respectively. In contrast, real contributions at surface wave frequencies were assessed as equal to 17%, 13%, and 23%, respectively (Table 3). This implies that between 42% and 77% of measured eddy fluxes arose from turbulent eddies at typical near-bottom frequencies [Shaw and Trowbridge, 2001].

Another important conclusion is that because of low-frequency oscillations, conservation may in fact hold over the course of only a relatively long time series (at least several hours). This means that only when averaged over such long time scales can eddy fluxes correctly represent the seafloor sink. Said in other terms, the sometimes large variability between the eddy fluxes derived for individual bursts (Figure 9) is because internal waves or other low-frequency mixing events cause intermittent advection or flux divergence contributions to continuity [see also Brand et al., 2008; McGinnis et al., 2011]. This reasoning is why we caution readers to be cognizant that the short-term variability of the eddy fluxes as reported in Table 3 is not a measure that should be used to infer whether fluxes are significantly different between sites. In essence, we consider $n = 1$ for each BOXER deployment (Table 4), and the results of replicate deployments are required before statistical tests concerning mean fluxes are attempted.

The smaller magnitudes of the eddy flux assessments of O$_2$ uptake compared with those of chambers, both of which are greater (as expected) than diffusive flux estimates from O$_2$ microelectrode profiles, are results that differ from past comparison studies in marine environments with sandy sediments. For example, Berg and Huettel [2008] found an average nighttime O$_2$ uptake assessed by EC to be 3.8 times the rate derived from diver-deployed cylindrical chambers in a shallow (\sim1 m depth) nearshore site in Apalachicola Bay, Florida. In the Florida study, the three velocity components were rotated so that $w_R \rightarrow 0$ every burst; however, the resulting eddy flux was not highly sensitive to changes in coordinate orientation. We suspect that shallow sites like Apalachicola Bay, which are under nearly air-saturated waters and experience regularly strong tidal currents, exhibit a greater degree of advective oxygen flux enhancement than the \sim80 m Oregon shelf sites we have studied under late
spring and summer conditions. Flux contributions due to pore water pumping through a few to tens of centimeters of highly permeable sediment are not easily measured by benthic chambers [Jahnke et al., 2005]. However, more work will need to be done to fully understand the effects of flux methodology, water depth, and physical variables on exchange processes involving such permeable sediments.

[46] In this study, the only contemporaneous comparison of O₂ flux methods was at SH. The observed eddy-to-chamber flux ratio of 0.54 may indicate that the chambers sampled a localized “hot spot” within the Oregon shelf benthos such as has been documented on other margins and ascribed to an inhomogeneous distribution of decomposing phytodetritus [e.g., as in Glud et al., 2009]. Additionally, chamber methods have their own sources of error and bias.

As reviewed by Reimers et al. [2001] and Viollier et al. [2003], among the potential concerns are (1) changes in the hydrodynamic regime, including the diffusive sublayer adjacent to the sediment surface; (2) artificially inducing or blocking advective pore water flow (especially with permeable sediments); and (3) artifacts caused by chambers disturbing the water and sediment layers to be studied. The chambers used in this study were square and relatively small (0.04 m²), but have yielded O₂ and silicate fluxes that agreed with the chambers used in this study were square and relatively small (0.04 m²), but have yielded O₂ and silicate fluxes that agreed within a factor of 2 with a wide variety of other designs during an intercalibration study [Tengberg, 1997]. Glud and Blackburn [2002] argue that insertion of small chambers will, per area of sediment, damage a greater number of fauna and burrows, which could enhance the O₂ flux. These effects should be proportionally greater when overall O₂ fluxes are low. The nonlinear O₂ traces (Figure 11) suggest a changing sediment-water interface gradient as the overlying water concentration decreases and (at SH) some divergent behavior, probably caused by different irrigation or bioturbation rates of benthic fauna.

[47] Our results do show an increase in eddy fluxes at 80 m moving from north off Newport to south off Hecata Head under similar late spring and summer conditions. This latitudinal trend is probably the best evidence that the eddy fluxes are valid representations of benthic O₂ consumption rates in this region. The water column and sediments to the south were observed to be richer in organic carbon, indicating sources of both fresh and buried organic matter to intensify rates of O₂ utilization. A pronounced bottom nepheloid layer was also evident at station HH in June. Cross-shelf motion of these near-bottom layers in response to changes in tides and upwelling-relaxation cycles has been described by Perlin et al. [2005], but it is not known how the variable turbulence and particulate loads of these layers couple to benthic biogeochemical cycling. There is an indication that regions of high turbidity are associated with regions of higher turbulence stemming in part from internal waves generated in areas of rough topography [D’Asaro et al., 2007]. Barth et al. [2005] describe a low-temperature, high-salinity, turbid bottom water pool, supplied primarily from the south in the lee region inshore of Heceta Bank and speculate that this region could be relatively important in the generation of low-O₂ waters on the shelf through local respiration. Our measurements support this possibility and suggest a need for additional flux measurements in the vicinity and farther south of HH.

4.2. The Contribution of Benthic Oxygen Consumption to Hypoxia

[48] Hypoxia at shelf depths in late spring and summer on the Oregon continental margin is indicated to be a new phenomenon that may signal an ecosystem response to changes in upwelling wind stress from climate warming [Grantham et al., 2004; Chan et al., 2008]. It is debated whether more severe hypoxia has arisen because of a greater contribution of low-O₂ source waters to the shelf or instead from greater in situ drawdown of O₂ through respiration in the benthic boundary layer including the sediments [Connolly et al., 2010]. Encompassing our measurements, current meter and dissolved O₂ records from a moored platform at 70 m adjacent to SH showed that hypoxic conditions persisted in the bottom boundary layer for over two-thirds of the time between mid-April and mid-September 2009 (K. Adams and J. Barth, personal communication, 2011). During the same period, there were four major wind-driven upwelling events followed by intervals of wind relaxation and downwelling.

As a consequence, at midshelf depths, cumulative along shore currents were relatively weak, which extended the local residence time of a density-confined bottom boundary layer (K. Adams and J. Barth, personal communication, 2011). Longer residence times of bottom boundary waters on the shelf should facilitate O₂ depletion by the sedimentary sink.

[49] The measurements reported here provide a baseline range for total seafloor O₂ utilization rates of approximately 3 to 10 mmol m⁻² d⁻¹. Using these rates, benthic respiration can be expected to deplete O₂ at a rate on the order of 1 µM d⁻¹ from the bottom 5–10 m of the water column, which matches rates estimated for water column respiration and for sedimentary O₂ consumption from mass balances of dissolved O₂ and nitrate in near-bottom waters by Connolly et al. [2010] for the Washington shelf. In the future, we hope to document how sensitive benthic O₂ fluxes are to bottom water O₂ concentrations, water depth, and the internal and surface wave conditions in this region. However, compared with other marine environments of similar water depths [Glud, 2008], the benthic O₂ consumption rates measured so far on the Oregon shelf are lower than average (the regression of global data of Glud [2008, Figure 16] predicts a typical total O₂ utilization rate = 11 mmol m⁻² d⁻¹ for a depth = 80 m). The relatively low rates suggest that (1) hypoxic conditions create a negative feedback (i.e., lower bottom water O₂ leads to a lower O₂ consumption rate) [Eldridge and Morse, 2008] and (2) the recent rise in shelf hypoxia along the U.S. West Coast is not because local respiration rates have increased in response to climate forcing. Rather, shelf hypoxia appears in response to more persistent (but interannually variable) upwelling-relaxation cycles that combine to inject O₂-depleted source waters onto the shelf, then hold these waters in the bottom boundary in contact with the benthic sink for O₂.

5. Summary and Conclusions

[50] This study presents sediment oxygen uptake rates determined from eddy correlation measurements made using a new lander (BOXER) designed for deployments from research vessels and investigations of continental shelf environments. When the lander was applied off central Oregon at ~80 m depth in June 2009, surface wave (swell
with a peak period $T_p \sim 16$ s) impacts on variations in vertical velocities and O_2 were strongly evident, while in August 2009 surface waves were much shorter and hence the variations measured were primarily due to turbulence. [51] Three detrending methods (linear, centered running average, and low-pass frequency filter) were compared, leading to the assessment that linear detrending is most effective when data bursts are of durations similar to those of important nonturbulent motions such as internal waves. However, if longer data bursts or continuous records are collected in future studies, a low-pass frequency filter set to eliminate long-period fluctuations would have the advantage of more precisely defining the frequencies of dynamic processes included in EC fluxes. Furthermore, records of pressure variations were shown to be useful for establishing coordinate rotation angles that minimize the contamination of vertical velocity components with horizontal components of wave motion.

[52] The EC O_2 fluxes determined ranged between -3 and -10 mmol m$^{-2}$ d$^{-1}$ while benthic chamber O_2 fluxes measured in duplicate at just two of the stations ranged between -4 and -8 mmol m$^{-2}$ d$^{-1}$. All fluxes are too low to imply an intensification of local diagenetic processes for a greater prevalence of hypoxic conditions in the benthic boundary layer of the Oregon shelf during the last decade. However, local depletion rates may be sensitive to a number of local variables such as water depth, the dynamics of internal mixing, bottom water O_2, sediment permeability, ripple regime, and sediment organic matter content. It is our intention to examine these controls more comprehensively in future research.

[53] Acknowledgments. We thank the officers and crew of the R/V \textit{Wecoma} for ensuring the successful execution of this research. Oregon State University Marine Technicians Daryl Swensen and David O’Gorman contributed greatly to the deployment strategy and provided critical equipment repairs while at sea. We thank Jay Simpkins and Tim Nolan for design and construction of the BOXER lander. Lars Damsgaard, from Unisense A/S, provided dedicated support of the EC equipment and its development for this research. Cody Doolan, Joe Jennings, Margaret Sparrow, Yvan Allieu, and Steve Pierce provided invaluable help with collecting and analyzing the water column and sediment data reported. Wendi Ruedf and Bonnie Chang provided technical support of the benthic chambers. Rob Wheatcroft provided use of his lab’s gamma ray detectors. Support for this project was provided by the National Science Foundation under grants OCE 0726984 and 1061218 to C. Reimers and is gratefully acknowledged. A. Devol’s participation was supported by NSF grant OCE 0628391. The paper was improved after receiving helpful reviews from Richard Dewey, Felix Meysman, Cecile Reimers and is gratefully acknowledged. A. Devol provided technical support of the benthic chambers. Rob Wheatcroft provided dedicated support of the EC equipment and its development for this research. We thank the officers and crew of the R/V \textit{Wecoma} for ensuring the successful execution of this research. Oregon State University Marine Technicians Daryl Swensen and David O’Gorman contributed greatly to the deployment strategy and provided critical equipment repairs while at sea. We thank Jay Simpkins and Tim Nolan for design and construction of the BOXER lander. Lars Damsgaard, from Unisense A/S, provided dedicated support of the EC equipment and its development for this research. Cody Doolan, Joe Jennings, Margaret Sparrow, Yvan Allieu, and Steve Pierce provided invaluable help with collecting and analyzing the water column and sediment data reported. Wendi Ruedf and Bonnie Chang provided technical support of the benthic chambers. Rob Wheatcroft provided use of his lab’s gamma ray detectors. Support for this project was provided by the National Science Foundation under grants OCE 0726984 and 1061218 to C. Reimers and is gratefully acknowledged. A. Devol’s participation was supported by NSF grant OCE 0628391. The paper was improved after receiving helpful reviews from Richard Dewey, Felix Meysman, Cecile Reimers and is gratefully acknowledged. A. Devol provided technical support of the benthic chambers. Rob Wheatcroft provided dedicated support of the EC equipment and its development for this research. We thank the officers and crew of the R/V \textit{Wecoma} for ensuring the successful execution of this research. Oregon State University Marine Technicians Daryl Swensen and David O’Gorman contributed greatly to the deployment strategy and provided critical equipment repairs while at sea. We thank Jay Simpkins and Tim Nolan for design and construction of the BOXER lander. Lars Damsgaard, from Unisense A/S, provided dedicated support of the EC equipment and its development for this research. Cody Doolan, Joe Jennings, Margaret Sparrow, Yvan Allieu, and Steve Pierce provided invaluable help with collecting and analyzing the water column and sediment data reported. Wendi Ruedf and Bonnie Chang provided technical support of the benthic chambers. Rob Wheatcroft provided use of his lab’s gamma ray detectors. Support for this project was provided by the National Science Foundation under grants OCE 0726984 and 1061218 to C. Reimers and is gratefully acknowledged. A. Devol’s participation was supported by NSF grant OCE 0628391. The paper was improved after receiving helpful reviews from Richard Dewey, Felix Meysman, Cecile Reimers and is gratefully acknowledged. A. Devol provided technical support of the benthic chambers. Rob Wheatcroft provided dedicated support of the EC equipment and its development for this research. We thank the officers and crew of the R/V \textit{Wecoma} for ensuring the successful execution of this research. Oregon State University Marine Technicians Daryl Swensen and David O’Gorman contributed greatly to the deployment strategy and provided critical equipment repairs while at sea. We thank Jay Simpkins and Tim Nolan for design and construction of the BOXER lander. Lars Damsgaard, from Unisense A/S, provided dedicated support of the EC equipment and its development for this research. Cody Doolan, Joe Jennings, Margaret Sparrow, Yvan Allieu, and Steve Pierce provided invaluable help with collecting and analyzing the water column and sediment data reported. Wendi Ruedf and Bonnie Chang provided technical support of the benthic chambers. Rob Wheatcroft provided use of his lab’s gamma ray detectors. Support for this project was provided by the National Science Foundation under grants OCE 0726984 and 1061218 to C. Reimers and is gratefully acknowledged. A. Devol’s participation was supported by NSF grant OCE 0628391. The paper was improved after receiving helpful reviews from Richard Dewey, Felix Meysman, Cecile Reimers and is gratefully acknowledged. A. Devol provided technical support of the benthic chambers. Rob Wheatcroft provided dedicated support of the EC equipment and its development for this research. We thank the officers and crew of the R/V \textit{Wecoma} for ensuring the successful execution of this research. Oregon State University Marine Technicians Daryl Swensen and David O’Gorman contributed greatly to the deployment strategy and provided critical equipment repairs while at sea. We thank Jay Simpkins and Tim Nolan for design and construction of the BOXER lander. Lars Damsgaard, from Unisense A/S, provided dedicated support of the EC equipment and its development for this research. Cody Doolan, Joe Jennings, Margaret Sparrow, Yvan Allieu, and Steve Pierce provided invaluable help with collecting and analyzing the water column and sediment data reported. Wendi Ruedf and Bonnie Chang provided technical support of the benthic chambers. Rob Wheatcroft provided use of his lab’s gamma ray detectors. Support for this project was provided by the National Science Foundation under grants OCE 0726984 and 1061218 to C. Reimers and is gratefully acknowledged. A. Devol’s participation was supported by NSF grant OCE 0628391. The paper was improved after receiving helpful reviews from Richard Dewey, Felix Meysman, Cecile Reimers and is gratefully acknowledged. A. Devol provided technical support of the benthic chambers. Rob Wheatcroft provided dedicated support of the EC equipment and its development for this research. We thank the officers and crew of the R/V \textit{Wecoma} for ensuring the successful execution of this research. Oregon State University Marine Technicians Daryl Swensen and David O’Gorman contributed greatly to the deployment strategy and provided critical equipment repairs while at sea. We thank Jay Simpkins and Tim Nolan for design and construction of the BOXER lander. Lars Damsgaard, from Unisense A/S, provided dedicated support of the EC equipment and its development for this research. Cody Doolan, Joe Jennings, Margaret Sparrow, Yvan Allieu, and Steve Pierce provided invaluable help with collecting and analyzing the water column and sediment data reported. Wendi Ruedf and Bonnie Chang provided technical support of the benthic chambers. Rob Wheatcroft provided use of his lab’s gamma ray detectors. Support for this project was provided by the National Science Foundation under grants OCE 0726984 and 1061218 to C. Reimers and is gratefully acknowledged. A. Devol’s participation was supported by NSF grant OCE 0628391. The paper was improved after receiving helpful reviews from Richard Dewey, Felix Meysman, Cecile Reimers and is gratefully acknowledged. A. Devol provided technical support of the benthic chambers. Rob Wheatcroft provided dedicated support of the EC equipment and its development for this research. We thank the officers and crew of the R/V \textit{Wecoma} for ensuring the successful execution of this research. Oregon State University Marine Technicians Daryl Swensen and David O’Gorman contributed greatly to the deployment strategy and provided critical equipment repairs while at sea. We thank Jay Simpkins and Tim Nolan for design and construction of the BOXER lander. Lars Damsgaard, from Unisense A/S, provided dedicated support of the EC equipment and its development for this research. Cody Doolan, Joe Jennings, Margaret Sparrow, Yvan Allieu, and Steve Pierce provided invaluable help with collecting and analyzing the water column and sediment data reported. Wendi Ruedf and Bonnie Chang provided technical support of the benthic chambers. Rob Wheatcroft provided use of his lab’s gamma ray detectors. Support for this project was provided by the National Science Foundation under grants OCE 0726984 and 1061218 to C. Reimers and is gratefully acknowledged. A. Devol’s participation was supported by NSF grant OCE 0628391. The paper was improved after receiving helpful reviews from Richard Dewey, Felix Meysman, Cecile Reimers and is gratefully acknowledged. A. Devol provided technical support of the benthic chambers. Rob Wheatcroft provided dedicated support of the EC equipment and its development for this research.

