Disease Models
Tissue Engineering Scaffolds
Injectable Fibers

Engineering dynamic hydrogels for studying fibrosis and cancer

Nearly all synthetic biomaterials present an elastic, mechanically static environment to cells, despite tissues being viscoelastic and displaying dynamic stiffening during development and disease progression (e.g., liver fibrosis and cancer). The ability to fabricate more realistic, tissue-like materials will enable improved cell culture experiments. We are developing new classes of modular hydrogels that exhibit time-dependent mechanics (viscoelasticity) reminiscent of natural tissues while also displaying independently tunable crosslinking density and degradability. We use these materials to model liver disease and screen potential therapeutics using patient-derived cells.

Design of clinically translational tissue engineering scaffolds

Muscle injuries and diseases are pervasively common in patients of many backgrounds ranging from elite athletes and soldiers to the elderly. While the vast majority of tissue engineering approaches focus on the healing of a single tissue many injuries, especially in orthopedics, happen at the interface between two distinct tissues. Indeed, the majority of muscle injuries occur at the fibers near the interface with tendon, known as the muscle-tendon junction (MTJ). Despite these facts, clinical and tissue engineering approaches to MTJ regeneration are lacking. We are engineering conductive collagen composites that should have a significant impact on not only the repair of skeletal muscle, but also other tissues including peripheral nerves and cardiac muscle.

Development of hybrid materials for cell delivery and mechanosensing studies

Fibrous hydrogels have recently emerged as useful substrates for a range of regenerative medicine applications. Unfortunately, many fibrous materials are limited by poor mechanics, inadequate cell infiltration, and/or do not support minimally invasive delivery strategies necessary for in vivo applications. We are harnessing the power of supramolecular chemistry to create self-assembled injectable fibrous materials that should be useful as both in vitro models of cellular mechanotransduction and as in vivo depots for therapeutic delivery.