2017

  1. Environmental Enrichment Rescues Binocular Matching of Orientation Preference in the Mouse Visual Cortex.

        Levine JN, Chen H, Gu Y, Cang J.

        J Neurosci. 2017 Jun; 37(24):5822-5833. doi: 10.1523/JNEUROSCI.3534-16

  1. Retinal origin of direction selectivity in the superior colliculus.

        Shi X, Barchini J, Ledesma HA, Koren D, Jin Y, Liu X, Wei W, Cang J

        Nat Neurosci. 2017 Apr; 20(4):550-558.  doi: 10.1038/nn.4498.


2016

  1. Binocular matching of thalamocortical and intracortical circuits in the mouse visual cortex.

        Gu Y, Cang J    

        Elife. 2016 Dec 29; 5. pii: e22032. doi: 10.7554/eLife.22032.


2015

  1. Visual Experience Is Required for the Development of Eye Movement Maps in the Mouse Superior Colliculus.

        Wang L, Liu M, Segraves MA, Cang J   

        J Neurosci. 2015 Sep 2;35(35):12281-6.

  1. MeCP2 regulates the timing of critical period plasticity that shapes functional connectivity in primary visual cortex.

        Krishnan K*, Wang BS*, Lu J, Wang L, Maffei A, Cang J, Huang ZJ. (*: co-first authors)

        Proc Natl Acad Sci USA. 2015 Aug 25;112(34):E4782-91.

  1. Seeing Anew through Interneuron Transplantation.

        Levine JN, Gu Y, Cang J

        Neuron. 2015 May 20;86(4):858-60.

  1. Neurons in the Most Superficial Lamina of the Mouse Superior Colliculus Are Highly Selective for Stimulus Direction.

        Inayat S*, Barchini J*, Chen H, Feng L, Liu X, Cang J. (*: co-first authors)

        J Neurosci. 2015, 35(20):7992-8003.

  1. Progressive degeneration of retinal and superior collicular functions in mice with sustained ocular hypertension.

        Chen H*, Zhao Y*, Liu M*, Feng L, Puyang Z, Yi J, Liang P, Zhang HF, Cang J, Troy JB, Liu X. (*: co-first authors)

        Invest Ophthalmol Vis Sci. 2015, 56(3):1971-84.


2014

  1. Visual cortex modulates the magnitude but not the selectivity of looming-evoked responses in the superior colliculus of awake mice.

        Zhao X*, Liu* M, Cang J. (*: co-first authors)

        Neuron. 2014, 84(1):202-13.

  1. Genetic disruption of the On visual pathway affects cortical orientation selectivity and contrast sensitivity in mice.

        Sarnaik R, Chen H, Liu X, Cang J.

        J Neurophysiol. 2014, 111(11):2276-86.

  1. Different roles of axon guidance cues and patterned spontaneous activity in establishing receptive fields in the mouse superior colliculus.

        Liu M, Wang L, Cang J.

        Front Neural Circuits. 2014, 8:23.


2013

  1. Environmental Enrichment Rescues Binocular Matching of Orientation Preference in Mice that Have a Precocious Critical Period

        Wang BS, Feng L, Liu M, Liu X, and Cang J.

  1.     Neuron. 2013, 80(1): 198-209.

  2. Orientation-selective Responses in the Mouse Lateral Geniculate Nucleus.

        Zhao X, Chen H, Liu X, Cang J.

  1.     J Neurosci. 2013, 33(31):12751-63.

  2. Sublinear binocular integration preserves orientation selectivity in mouse visual cortex.

        Zhao X, Liu M, Cang J.

  1.     Nat Commun. 2013, 4:2088.

  2. Developmental mechanisms of topographic map formation and alignment

        Cang J, Feldheim DA.

  1.     Annu Rev Neurosci. 2013, 36:51-77.

  2. Experience-Dependent and Independent Binocular Correspondence of Receptive Field Subregions in Mouse Visual Cortex.

        Sarnaik R, Wang BS, Cang J.

  1.     Cereb Cortex. 2013, 24(6):1658-70.

  2. Sustained ocular hypertension induces dendritic degeneration of mouse retinal ganglion cells that depends on cell type and location.

        Feng L, Zhao Y, Yoshida M, Chen H, Yang JF, Kim TS, Cang J, Troy JB, Liu X.

        Invest Ophthalmol Vis Sci. 2013, 54(2):1106-17.


2012

  1. New Model of Retinocollicular Mapping Predicts the Mechanisms of Axonal Competition and Explains the Role of Reverse Molecular Signaling during Development.

  2.     Grimbert F and Cang J

  3.     J Neurosci. 2012, 32(28):9755-68.


2011

  1. Overexpression of Neurotrophin-3 Stimulates a Second Wave of Dopaminergic Amacrine Cell Genesis after Birth in the Mouse Retina.

  2.     Yoshida Y*, Feng L*, Grimbert F, Rangarajan KV, Buggele W, Copenhagen DR, Cang J, and Liu X. (*: co-first authors)

  3.     J Neurosci. 2011, 31(35):12663-73.

  4. Detection of Visual Deficits in Aging DBA/2J Mice by Two Behavioral Assays.

  5.     Rangarajan KV*, Lawhn-Heath C*, Feng L, Kim TS, Cang J, and Liu X. (*: equal contribution)

  6.     Curr Eye Res. 2011, 36(5):481-91.


2010

  1. Visual receptive field properties of neurons in the superficial superior colliculus of the mouse.

  2.     Wang L, Sarnaik R, Rangarajan K, Liu X, and Cang J.

  3.     J Neurosci. 2010, 30(49):16573-84.

  4. Non-centered spike-triggered covariance analysis reveals neurotrophin-3 as a developmental regulator of receptive field properties of ON-OFF retinal ganglion cells.

  5.     Cantrell DR, Cang J, Troy JB, Liu X.

  6.     PLoS Comput Biol. 2010, 6(10):e1000967.

  7. Critical Period Plasticity Matches Binocular Orientation Preference in the Visual Cortex.

  8.     Wang BS, Sarnaik R, Cang J.

  9.     Neuron. 2010, 65(2):246-256.

  10. Neonatal cerebral hypoxia-ischemia impairs plasticity in rat visual cortex.

  11.     Failor S, Nguyen V, Darcy DP, Cang J, Wendland MF, Stryker MP, McQuillen PS.

  12.     J Neurosci. 2010, 30(1):81-92.


2009

  1. Retinal input instructs alignment of visual topographic maps.

  2.     Triplett JW, Owens MT, Yamada J, Lemke G, Cang J, Stryker MP, Feldheim DA.

  3.     Cell. 2009,139(1):175-85.

  4. Direction-Specific Disruption of Subcortical Visual Behavior and Receptive Fields in Mice Lacking the Beta2 Subunit of Nicotinic Acetylcholine Receptor.

  5.     Wang L, Rangarajan KV, Lawhn-Heath CA, Sarnaik R, Wang B-S, Liu X, Cang J.

  6.     J Neurosci. 2009, 29(41):12909-18.

  7. Regulation of neonatal development of retinal ganglion cell dendrites by neurotrophin-3 overexpression.

  8.     Liu X, Robinson ML, Schreiber AM, Wu V, Lavail MM, Cang J, Copenhagen DR.

  9.     J Comp Neurol. 2009, 514(5):449-58.


2008

  1. Roles of ephrin-As and structured activity in the development of functional maps in the superior colliculus.

  2.     Cang J, Wang L, Stryker MP and Feldheim D A.

  3.     J Neurosci. 2008, 28(43):11015–11023.

  4. Selective disruption of one cartesian axis of cortical maps and receptive fields by deficiency in ephrin-As and structured activity.

  5.     Cang J*, Niell CM*, Liu X, Pfeiffenberger C, Feldheim DA and Stryker MP. (*: co-first authors)

  6.     Neuron. 2008, 57(4):511–523.


Before 2008

  1. Integrated semiconductor optical sensors for chronic, minimally-invasive imaging of brain function.

  2.     Lee TT, Levi O, Cang J, Kaneko M, Stryker MP, Smith SJ, Shenoy KV, Harris JS.

  3.     Engineering in Medicine and Biology. 2006, 1:1025-8.

  4. Intrinsic ON responses of the retinal OFF pathway are suppressed by the ON pathway.

  5.     Renteria RC, Tian N, Cang J, Nakanishi S, Stryker MP, and Copenhagen DR.

  6.     J Neurosci. 2006, 26(46):11857–11869.

  7. Development of precise maps in visual cortex requires patterned spontaneous activity in the retina.

  8.     Cang J, Rentería RC, Kaneko M, Liu X, Copenhagen DR and Stryker MP.

  9.     Neuron. 2005, 48(5): 797-809.

  10. Ephrin-As guide the formation of functional maps in the visual cortex.

  11.     Cang J*, Kaneko M*, Yamada J, Woods G, Stryker MP, and Feldheim DA. (*: co-first authors)

  12.     Neuron. 2005, 48(4): 577-89.

  13. An eye-opening experience.

  14.     Gandhi SP, Cang J and Stryker MP. 

  15.     Nature Neurosci. 2005, 8(1):9-10.

  16. In vivo whole-cell recording of odor-evoked synaptic transmission in the rat olfactory bulb.

  17.     Cang J and Isaacson JS.

  18.     J Neurosci. 2003, 23(10):4108-16.

  19. Model for intersegmental coordination of leech swimming: Central and Sensory Mechanisms.

  20.     Cang J and Friesen WO.

  21.     J Neurophysiol. 2002, 87:2760-9.

  22. Sensory and central mechanisms control intersegmental coordination.

  23.     Friesen WO and Cang J.

  24.     Curr Opinion NeuroBiol. 2001, 6:678-683.

  25. Sensory modification of leech swimming: Interactions between ventral stretch receptors and swim-related neurons.

  26.     Cang J, Yu X and Friesen WO.

  27.     J Comp Physiol. 2001, 187:569-79.

  28. Sensory modification of leech swimming: rhythmic activity of ventral stretch receptors   can change intersegmental phase relationships.

  29.     Cang J and Friesen WO.

  30.     J Neurosci. 2000, 20:7822-7829.

Selected Publications:

Publications