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Mixed effects models were used to examine the separate effects associated with age and retest on changes
in various cognitive abilities. Individuals (N � 800) ranging in age from 40 to 70 years at the 1st
measurement occasion were assessed with measures of memory, spatial abilities, and speed on 4
occasions. All cognitive abilities showed decline associated with increased age and improvement across
the 4 measurement occasions. The age-related effects were similar across variables, but the practice
effects were largest for memory and smallest for speed. When retest effects were not included in the
models, the age-related effects were underestimated, with the magnitude of bias depending on the size
of the ignored retest effects. It is suggested that both age and retest should be modeled simultaneously
when analyzing longitudinal data because part of the change across occasions may be attributable to
practice or reactive effects.

The advocacy of longitudinal, versus cross-sectional, ap-
proaches has a long history in the study of cognitive abilities (e.g.,
Nesselroade & Baltes, 1979). There now seems to exist a general
agreement on the benefits of longitudinal designs for examining
both growth and decline aspects of change. Some of these benefits
include the possibility of estimating within-person change, indi-
vidual differences in changes, and correlations between rates of
change and other variables (see, e.g., Schaie, 1983; Schaie &
Hofer, 2001), and the possibility of integrating individual differ-
ences within developmental change (Wohlwill, 1970). Despite
these clear advantages, however, longitudinal studies also bring
with them a new set of methodological issues. Among the most
important of these are attrition, cohort effects, and practice or
retest effects (Cohen, 1991; Nesselroade & Baltes, 1979). In this
article, we focus on practice—or retest—effects in longitudinal
studies. In particular, we illustrate how recent analytical proce-
dures can be used to separate the effects of age and retest on
changes in various cognitive abilities.

Practice Effects

Researchers studying the development of a particular attribute
collect data on individuals at different occasions. The repeated
observations permit examination of changes in the persons’ at-
tribute over time. In some instances, the assessment does not
interfere with the attribute itself. If one considers, say, physical
growth, a person will grow independent of the number of assess-
ments—or of the method—used to measure growth. In other
instances, however, because of the technique, the number of as-
sessments, or both, the measurement may interfere with the devel-
opmental process at hand. This is likely to be the case with
cognitive abilities. At each assessment, the person is presented
with testing tasks, which might also serve as learning materials. It
is therefore possible that at the next occasion of measurement the
person’s performance will be influenced by the previous experi-
ence. That is, the previous exposure to the testing materials may be
helping the person to improve and, thus, interfering with the
normal development the researcher is trying to capture. The extent
of this contamination will depend on various factors, including the
nature of the attribute being measured, the number of repeated
assessments and the retest interval between them, and the kind of
assessment (see, e.g., Cattell, 1957).

The phenomenon of practice, or retest, effects is well-known in
the area of cognitive abilities (e.g., Horn, 1972; McArdle &
Woodcock, 1997; Nesselroade & Baltes, 1979; Schaie, 1996;
Thorndike, 1933). It is common to find that participants’ perfor-
mance in a cognitive test improves over occasions, with differ-
ences in the magnitude of improvement across variables (e.g.,
Lowe & Rabbitt, 1998; Rabbitt, 1993; Rabbitt, Diggle, Smith,
Holland, & McInnes, 2001; Zelinski, Gilewski, & Schaie, 1993)
and, presumably, across persons. For example, both the means and
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the variances have been found to increase from the first to the
second testing occasion (Jones, 1962; McArdle & Woodcock,
1997), and practice effects have been detected over four occasions,
although they decreased in magnitude across occasions (Rabbitt et
al., 2001). If one is interested in the development of cognitive
abilities, therefore, the changes that are due to a person’s increase
in age (i.e., presumably reflecting development or maturation)
need to be separated from the changes that are due to retesting (i.e.,
presumably reflecting practice and experience).

Separating Age Effects From Retest Effects

The attempt to separate age effects from retest effects has a
history parallel to the study of the development of cognitive
abilities (see, e.g., Donaldson & Horn, 1992). One approach to
separating the two effects has tried to avoid practice effects by
designing studies with large time intervals between occasions
(Schaie, 1996). The underlying assumption of this approach is that
given ample time, any effects associated with practice will dissi-
pate. One problem with this method, however, is the uncertainty
with regard to how large the intervals need to be to exclude any
practice effect. Retest effects have been found in studies with retest
intervals of several years (see Rabbitt et al., 2001), and some
researchers have suggested that with certain variables, 6 years may
be needed between occasions to eliminate practice effects (Zelin-
ski & Burnight, 1997). Moreover, optimal time intervals are likely
to differ across measures, ages, and persons (see Cattell, 1957),
and very long intervals may reduce the sensitivity to detect change,
especially in periods of accelerated growth or decline.

Separating age changes from practice effects has also been
attempted via statistical modeling (e.g., McArdle & Anderson,
1990; McArdle, Ferrer-Caja, Hamagami, & Woodcock, 2002;
McArdle & Woodcock, 1997; Rabbitt et al., 2001; Wilson et al.,
2002; see also Cattell, 1970). This approach consists of including
separate terms for age and occasion in the same analytic model, but
a potential problem arises when the age increment and the retest
occasion are highly correlated. For example, imagine a study in
which individuals of the same age are measured at intervals of
exactly 1 year. The age-related changes in a particular variable will
then be confounded with possible changes in performance that are
due to retest. That is, increments in retest will correlate perfectly
with increments in age. When the retest interval presents variation
and there is ample spread in age, however, this approach presents
merits.

McArdle and Anderson (1990) used this method to examine
changes in full-scale Wechsler Adult Intelligence Scale (WAIS)
scores for a sample of individuals ranging in age from 60 to 75
years. Each individual was measured four times at intervals of 4
years between occasions. Changes in WAIS scores were analyzed
by using a latent growth model that combined basis coefficients for
age and measurement occasion. The findings indicated a decline in
WAIS scores with increasing age, but this decline was somewhat
offset by small retest gains. Because age increment and measure-
ment occasion were partially correlated, however, some of the
fitted models (i.e., latent functions for both age and retest) were not
identified. McArdle and Anderson recognized that both dimen-
sions had not been separated enough in the design of the study and
acknowledged the difficulty of using statistical tools to overcome
limitations of the study design.

One possible way to avoid a high correlation between age
increment and measurement occasion is to introduce variation in
the retest interval (McArdle & Woodcock, 1997; Schlesselman,
1973; Vinsonhaler & Meredith, 1966). McArdle and colleagues
used this approach by measuring participants on two occasions
with retest intervals ranging from several months to 10 years
(McArdle et al., 2002; McArdle & Woodcock, 1997). Such a
variation enabled the authors to distinguish practice effects from
age-related effects in a study involving individuals with a large
range of ages (i.e., 2 to 98 years). Because participants were
assessed only twice, however, the modeling of practice effects was
limited in several regards. First, the only testable hypothesis for
practice was a linear effect. Second, practice was forced to be
orthogonal with other terms of the model (i.e., intercept and age
slope). Third, the model did not include a term for the Age �
Practice interaction, and thus it was not possible to determine
whether there were age differences in practice.

Separating growth effects from practice effects in two-occasion
data requires that certain restrictions be imposed in the model.
When more than two data points are available per person, how-
ever, such restrictions can be relaxed and more complex models
can be examined. In a recent report, Rabbitt et al. (2001) illustrated
this point using data from a 17-year longitudinal study in which
participants had been measured up to four times. Rabbitt et al.
were interested in examining the effects of age and practice on
changes in fluid ability for a large sample of individuals who
ranged in age from 40 to 93 years at the initial testing. To this end,
they used a random effects model that included age effects (i.e.,
linear and quadratic terms) together with practice effects (i.e., step
increases between successive occasions on which the subject had
been measured). The results from this model indicated that fluid
abilities decreased over age, with larger declines among older
individuals (i.e., negative quadratic effect), but individuals’ per-
formance improved across measurement occasions. Moreover,
positive retest effects persisted up to the fourth occasion, although
the size of the effects decreased across occasions (i.e., 52%, 26%,
and 22% of the total effects across the three retests). Rabbitt et al.
further attempted to fit a model that considered variation in the
practice term, but the estimates were imprecise and no confidence
intervals could be estimated. Nevertheless, these results showed
that when individuals are measured over time, retest effects can
occur even with long intervals, and the magnitude of those effects
may differ as a function of the measurement occasion.

Although including both growth and practice in the analytic
model can lead to complexities, omitting practice from the model
may lead to spurious inferences. For example, if retest effects exist
but they are not modeled simultaneously with age, all of the
individual change over time is absorbed by the age component. It
is therefore possible that negative changes that are due to age
become negligible because they are obscured—canceled out—by
hidden positive practice effects. As Rabbitt et al. (2001) noted, this
pattern could be the reason why various measures of memory (e.g.,
episodic, text memory, and word recall) do not show age-related
declines in some studies (Elias, Robins, & Elias, 1996; Hultsch,
Hertzog, Small, McDonald-Miszczk, & Dixon, 1992; Schaie,
1989). Actual declines may have been obscured by performance
improvements that were due to retest.

In the current article, we attempt to separate via statistical
modeling the effects of age and practice on the changes in various
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cognitive abilities. We use different models to test specific hy-
potheses (e.g., linear, latent) about the relation of age and practice
to cognitive abilities. We also include a random effect for practice
to represent variation in practice effects across individuals. Be-
cause of its conceptual logic, practice is not constrained to be
orthogonal with other terms in the model (initial level and age
slope). That is, individuals who start at higher levels of cognitive
functioning may benefit from retest differently than individuals
with lower initial ability levels. Finally, to examine a possible
relation of practice to age, we examine the interaction between
these two terms. This interaction, not examined in earlier studies,
tests the extent to which individuals of different ages benefit
differently from retest. Although some of the features included
here are novel, we build on previous work by others and simply
take advantage of newer and more flexible modeling possibilities.
The results generated by these models should prove informative
about practice effects and possible differences in such effects
across persons, measurement occasions, and cognitive abilities.

Method

Participants

This report is based on data from the Age, Lead Exposure, and Neu-
robehavioral Decline Study (Walter F. Stewart, principal investigator).
Extensive information about the study design, participants, and data is
available in previously published studies (e.g., Schwartz et al., 2000;
Stewart et al., 1999), and thus information about participants and measures
is abridged here. The participants were 834 individuals who took part in a
4-year prospective study to evaluate the effects of lead exposure on
changes in cognitive function. All participants were men who were be-
tween 40 and 70 years of age at the first assessment. Of the 834 partici-
pants, 703 were former employees of a U.S. chemical manufacturing
facility that produced tetraethyl and tetramethyl lead, and they had ceased
occupational lead exposure for an average of 16 years. The other 131 were
unexposed individuals.

Measures

Participants visited a clinical setting for up to four occasions, at which
time they completed a comprehensive neurobehavioral battery and were

assessed on a number of biological measures, including blood lead and
bone lead levels. On the basis of the results of an exploratory factor
analysis described below, the variables were grouped into three different
cognitive abilities. Specifically, several measures from the Rey Auditory
Verbal Learning Test (RAVLT; total score across five recall trials, delayed
recall, and recognition test score) were used to represent verbal learning
and memory. The Delayed Recall subtest from the Rey–Osterreith Com-
plex Figure Test (RCF), the Block Design subtest of the Wechsler Adult
Intelligence Scale—Revised (WAIS–R), and the symbol digit paired asso-
ciate learning test were selected to assess spatial ability. A choice reaction
time task, the Stroop Test (A, B, and C forms), the Trail Making Test Parts
A and B, and the Digit Symbol subtest from the WAIS–R were used to
measure processing speed. The same versions of the tests were adminis-
tered on each occasion.

Data Description and Preliminary Analyses

Table 1 presents a description of the participants’ ages at all occasions
of measurement together with the retest intervals between assessments. In
addition to the overall sample, information is presented for different age
groups (i.e., younger than 50 years, between 50 and 59 years, and 60 years
and older). This table also indicates that, of the initial 827 participants
who reported their age, 86.7%, 72.3%, and 66.0% were present at the
second, third, and fourth assessment occasions, respectively. These
retention patterns seem to be uniform across the different age groups,
with the possible exception of the younger individuals at the fourth
occasion, who showed a somewhat smaller retention rate. Most of the
analyses reported below were conducted with maximum-likelihood
estimation procedures that are based on all available data. However, it
is important to note that similar results were obtained when the analyses
were repeated on the 492 individuals with complete data on all four
occasions.

Preliminary analyses were initially conducted to select measures that
represented the same construct at all occasions. First, z scores based on the
score at the first occasion were calculated for all measures, their purpose
being to estimate possible changes relative to the initial scores. A factor
analysis with oblique rotation was then performed on the data at each of the
four occasions to examine what variables could be represented by the same
underlying construct. The results suggested that the variables loaded on
three factors representing memory, space-related abilities, and processing

Table 1
Description of Ages (in Years) and Time Retests

Age group Time 1 Time 2 Time 3 Time 4

� 50 years 45.9 (2.84) 47.1 (2.78) 47.9 (2.73) 49.0 (2.68)
�age .987 (.227) .885 (.154) .946 (.184)
N 181 153 130 102

50–59 years 55.0 (2.79) 56.1 (2.80) 56.9 (2.84) 57.8 (2.87)
�age 1.04 (.274) .856 (.129) .923 (.171)
N 357 319 265 249

� 60 years 64.8 (3.21) 65.9 (3.24) 66.5 (3.26) 67.5 (3.25)
�age 1.05 (.252) .835 (.105) .924 (.193)
N 289 244 203 194

All 56.5 (7.63) 57.5 (7.52) 58.2 (7.50) 59.6 (7.31)
�age 1.03 (.258) .857 (.128) .927 (.182)
N 827 717 598 545

Note. Values in parentheses are standard deviations.
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speed, with a similar pattern across occasions.1 To examine the equiva-
lence of the models across the four occasions, we conducted invariance
tests. The first model of these tests was a nonrestrictive model with all the
parameters allowed to vary across measurement occasions. This model
yielded a fit that served as a baseline against which to compare subsequent
models: �2(248, N � 2,716) � 3,100; root mean square error of approx-
imation (RMSEA) � .050. The next model constrained the loadings to be
equal, and this restriction yielded a slightly worse fit: ��2/�df � 76/30;
�RMSEA � .024. The next model imposed a further restriction by setting
all the variances to be equal, and this model also worsened the fit:
��2/�df � 31/9; �RMSEA � .030. The final model added a similar
equality restriction in the covariances but did not alter the fit: ��2/�df �
4/9; �RMSEA � .000.

The results from these analyses indicated that strict metric invariance
does not hold across the four occasions. Given the small differences in fit
and the similarity in the parameter estimates across the different measure-
ment points, however, we considered it reasonable to assume measurement
invariance. Composites of memory, space, and speed were therefore cre-
ated by averaging the z scores of all the variables representing each ability
at each occasion. These composites were used in all subsequent analyses.

Table 2 presents means and standard deviations for the memory, space,
and speed composites across the four measurement occasions. These de-
scriptive statistics are presented for the three age groups separately and for
the overall sample. Figures 1, 2, and 3 portray the basic data used in the
analyses for memory, space, and speed, respectively. The top panel in each
figure portrays the complete data. In this plot, each line represents a given
person’s scores, and a single dot is used to represent a person with only one
measurement occasion. This representation of the data combines between-
persons differences (corresponding to the position on the vertical axis at
which the lines begin) and within-person changes (corresponding to the
trajectories of the lines), and these two components are separated in the two
bottom panels. The bottom left panel was constructed by simply plotting
the scores at the first measurement occasion as a function of age, and thus
it represents only the between-persons age-related effects. The bottom right
panel was constructed by shifting each line along the vertical axis to the
zero position, and thus it represents within-person changes distinct from
between-persons differences.

Figures 1, 2, and 3 show clear age differences in each cognitive ability.
Across the three variables, performance seems to decrease with age, but the
scores tend to increase with repeated assessments. Whereas this pattern is
evident for memory, it is less apparent for space and almost nonexistent for
speed, which shows individual declines across occasions. These plots

illustrate the goal of our analyses, namely, to estimate the contributions of
age and retest to the changes in cognitive abilities (apparent in the top
panels) by considering both between-persons differences (bottom left pan-
els) and within-person changes (bottom right panels). Details of the ana-
lytical procedures are described below.

Age-Based Mixed Growth Models

A series of models was used to investigate the changes in each cognitive
ability and the effect of age and practice on such changes. A basic growth
model for a dependent variable Y measured over time (t � 1 to T ) on a
person (n � 1 to N) can be written as

Y �t�n � y0n � Age�t�n � ysn � e�t�n , (1)

where Y [t]n is the observed score on person n at measurement t, y0n is the
latent initial level score of person n, Age[t]n is the observed age of person
n at measurement t, ysn is a latent score of person n, representing the slope,
or the individual change over time, and e[t]n is the latent error score of
person n at measurement t. This model includes sources of individual

(text continues on page 250)

1 The standardized factor loadings for each cognitive construct at each
measurement occasion were as follows. Time 1: Memory—.85, .92, and .69
(for the total score across five recall trials, the delayed recall score, and the
recognition test score of the RAVLT, respectively); Spatial Ability—.70,
.61, and .59 (for the symbol digit paired associate learning test, the RCF
Delayed Recall subtest, and the WAIS–R Block Design subtest, respec-
tively); Processing Speed—.75, .70, .65, .78, .71, .79, and .52 (for the Digit
Symbol subtest, the Trail Making Test Parts A and B, the Stroop Test A,
B, and C forms, and the choice reaction time task, respectively). Time 2:
Memory—.83, .94, and .67; Spatial Ability—.69, .61, and .59; Processing
Speed—.75, .65, .58, .80, .75, .80, and .65. Time 3: Memory—.82, .93, and
.68; Spatial Ability—.68, .62, and .61; Processing Speed—.75, .71, .63,
.78, .68, .80, and .42. Time 4: Memory—.88, .92, and .68; Spatial Ability—
.74, .62, and .60; Processing Speed—.70, .75, .71, .86, .79, .88, and .58.
The correlations between the factors at the three occasions were as follows:
Time 1—.65, .46, and .60, for Memory–Space, Memory–Speed, and
Space–Speed, respectively; Time 2—.62, .46, and .58; Time 3—.63, .43,
and .59.

Table 2
Descriptive Statistics by Age Group and for the Overall Sample

Cognitive ability
and age group Time 1 Time 2 Time 3 Time 4

Memory
� 50 years .330 (.841) .613 (.773) .794 (.697) .820 (.777)
50–59 years .109 (.811) .402 (.728) .535 (.735) .662 (.758)
� 60 years �.360 (.872) �.102 (.852) .092 (.821) .203 (.927)
All �.005 (.881) .275 (.831) .442 (.802) .529 (.860)

Space
� 50 years .314 (.743) .359 (.739) .568 (.722) .541 (.786)
50–59 years .130 (.705) .130 (.726) .339 (.683) .296 (.710)
� 60 years �.360 (.723) �.365 (.702) �.220 (.716) �.230 (.777)
All �.001 (.769) .010 (.773) .199 (.768) .154 (.805)

Speed
� 50 years .338 (.587) .410 (.700) .418 (.509) .426 (.459)
50–59 years .163 (.578) .231 (.629) .252 (.499) .180 (.804)
� 60 years �.447 (.835) �.361 (.781) �.396 (.748) �.489 (.897)
All �.012 (.754) .066 (.766) .068 (.686) �.013 (.868)

Note. Values in parentheses are standard deviations. All values are based on z scores computed from Time 1.
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differences in the level and slope, whose terms can be decomposed at a
second level as

y0n � �0 � e0n ,

ysn � �s � esn , (2)

where the level and slope scores have fixed group means (�0 and �s) and
residuals (e0n and esn), and these residuals have variance components (�0

2,
�s

2, and �0s). In the case of cross-sectional data, this same model can be
written as

Y �1�n � y0n � Age�1�n � ys � e�1�n , (3)

where Y[t]n is the observed score on person n at the only measurement
occasion (1), y0n is still the latent initial level score of person n, and
Age[1]n � ys becomes the difference in the dependent variable Y as a
function of 1 unit of cross-sectional age (i.e., 1 year). The basic model of
Equation 1 can take different forms depending on the researcher’s hypoth-
eses. For example, in the case of a hypothesis of no growth (ys � 0), this
basic model can be rewritten as

Y �t�n � y0n � e�t�n. (4)

An alternative model is a polynomial model that considers different
nonlinear age functions (i.e., quadratic, cubic), as

Y �t�n � y0n � Age�t�n � ys1n � Age�t�n
2 � ys2n � e�t�n , (5)

where Age[t]n
p is the age basis of power p for person n, and yspn is the latent

polynomial component score of person n.

Age- and Occasion-Based Mixed Growth Models

The initial age-based model expressed in Equation 1 can also be ex-
tended to incorporate exogenous variables. In the current investigation, we
are interested in examining the effects of practice, and thus the model can
be written as

Y �t�n � y0n � Age�t�n � ysn � P�t� � psn � e�t�n , (6)

where P[t] represents the practice, or retest, effects of person n at mea-
surement t, and psn represents the slope, or individual change in practice
over time, for person n. The other terms are as specified in Equation 1.
Similarly to previous specifications, the terms of this model can be de-
composed at a second level as

y0n � �0 � e0n ,

ysn � �s � esn ,

psn � �p � epn , (7)

where the level, slope, and practice scores have fixed group means (�0, �s,
and �p, respectively) and residuals (e0n, esn, and epn), and these residuals
have variance components (�0

2, �s
2, and �p

2) and can co-vary among them-
selves (�0s, �0p, and �sp). Depending on data conditions, restrictions could
be imposed in some of these components (e.g., if there are only two
repeated observations per person, the covariances between practice and
other terms could be set to zero). According to this model, change in Y can
be described as a function of two processes that unfold over time: age and
practice. Age[t]n � ysn can vary over time for each person, so this term
represents an age-based growth process. That is, it is a slope based on age
at testing occasion t (i.e., average change in Y per year for a person n) and
takes into consideration the time dependency of scores for each person. In
turn, the practice term, P[t] � psn, reflects a growth process based on the
measurement occasion (i.e., average change in Y per unit change in retest
for a person n). A path diagram of this model is depicted in Figure 4. This
figure represents a variable Y, measured at t occasions, whose growth is

modeled as a function of an intercept y0 and two slopes ys and p, repre-
senting processes related to age and retest. An important feature of this
figure—and of the underlying model—is the basis coefficients (i.e., paths
from age and retest to the observed variables). By setting these paths to
fixed or latent values, one can test different hypotheses of change.

Separating the effects of age and practice requires a model with a
mixture of both age and practice processes. Examining the characteristics
of either process can be accomplished by modeling specific growth hy-
potheses using basis coefficients (McArdle & Anderson, 1990; McArdle &
Woodcock, 1997). For example, one could fit a model positing linear
processes for both age and practice by setting the age basis coefficients as
A[t]n fixed � 0, 1, 2, . . . age (t), and the practice basis coefficients as P[t]
fixed � 0, 1, 2, . . . occasion (t). This model would represent a function that
changes linearly with age and is affected by a practice influence, which
takes place at the second assessment and increases linearly after that.
Alternative basis coefficients could be used to test different hypotheses.
For example, considering the four measurement occasions in the current
data, the specification P[t] � 0, 1, 1, 1 would test for practice effects that
take place at the first retest and remain constant thereafter. In contrast, the
specification P[t] � 0, 1, 4, 9 would test for a quadratic practice effect. To
examine more complex growth functions, some of these coefficients can be
freed so as to represent unequal, or latent, practice growth. For example,
the specification P[t] � 0, ?, ?, 1 would allow examination of whether
practice effects are discontinuous across occasions.

The model expressed in Equation 6 could also include a Practice � Age
interaction. Such an interaction term would be helpful for examining the
relation of practice to age (i.e., whether individuals benefit differently from

Figure 4. Path diagram of a latent growth model with two processes.
Y[t] � score at time t; y0 � intercept; ys � “age” slope; p � “retest” slope;
ey[t] � uniquenesses; 1 � constant; �a � basis coefficients for age;
�p � basis coefficients for practice; � � means; �2 � variances; � �
covariances.
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retest as a function of their age). A model with an interaction term could
be written as

Y �t�n � y0n � Age�t�n � ysn � P�t� � psn � Age � P�t� � yapn � e�t�n ,

(8)

where the interaction term Age � P represents the extent to which practice
effects differ as a function of age. To avoid overparameterization of this
model, the random effects associated with the interaction term (i.e., vari-
ance of the interaction and covariance with all the other terms in the
equation) can be excluded.

Age- and Occasion-Based Mixed Growth Models Across
Groups

One approach to testing for differences in age and retest effects across
age groups is to fit the same analytic model to data from different age
groups. That is, the model in Equation 6 could be written as

Y �t�n
	g
 � y0n

	g
 � Age�t�n
	g
 � ysn

	g
 � P�t�	g
 � psn
	g
 � e�t�n

	g
 , (9)

where g � 1 to G represents the group, and thus differences in the growth
processes across individuals of different ages could be examined. If evi-
dence of a Practice � Age interaction was found in previous analyses, it
could be decomposed using this approach as well. In addition, the mixed
models presented here rely on a convergence assumption (after Bell, 1953).
This assumption can be formally tested using a multiple-group analysis in
which one examines whether the growth of a selected cognitive variable
can be described using the same functions (i.e., age and retest) for all ages.

Results

Age-Based Mixed Growth Analyses

The analyses followed the logic outlined in the Method section
and were conducted using the procedures MIXED and NLMIXED
in SAS (Littell, Miliken, Stoup, & Wolfinger, 1996). These pro-
cedures use a maximum likelihood algorithm to generate param-
eter estimates using all available data. In the case of incomplete
data, this approach assumes they are missing at random, an as-
sumption that may not be justified. As noted earlier, however, the
analyses were repeated with the data from participants who com-
pleted testing at all four occasions, and the results indicated similar
trends.

As a starting point, we first examined a cross-sectional model
based on the data at the first occasion. This model, expressed in
Equation 3, yielded an intercept, a cross-sectional slope for age
(centered at 39.9 years, the youngest age), and a residual. The
parameter estimates from this model are displayed in the first
columns of Tables 3, 4, and 5 (for memory, space, and speed,
respectively) and simply describe the relation of age and cognitive
abilities if data were available at one occasion only. These param-
eters represent the between-persons differences portrayed in the
bottom left panels of Figures 1, 2, and 3. Of particular interest here
is the cross-sectional slope, which reflects the mean difference in
the outcome across individuals who differ in age by 1 year. The
estimates were similar across the three variables and indicated a
small and similar age-related decline in cognition (�a � �.035,

Table 3
Age-Based Mixed Growth Model Parameters for Memory

Parameter
Age [t0]

cross-sectional
Age [tt]

longitudinal
Age [tt] �
1st retest

Age [tt] �
linear retest

Age [tt] �
latent practice

Fixed effects

�0 Intercept .581 (8) .281 (4) .381 (6) .604 (9) .573 (9)
�a Linear age �.035 (9) �.002 (0) �.023 (7) �.035 (10) �.035 (10)
�p Practice .409 (21) .619 (24) .619 (23)

�p[1] 0 (�) 0 (�) 0 (�)
�p[2] 1 (�) .33 (�) .482 (18)
�p[3] 1 (�) .66 (�) .731 (24)
�p[4] 1 (�) 1 (�) 1 (�)

Random effects

� 0
2 Intercept .000 (?) .731 (5) .700 (5) .647 (5) .659 (5)

� a
2 Linear age .001 (3) .001 (1) .001 (1) .001 (1)

� p
2 Practice .032 (1) .090 (3) .114 (4)

�0a Level–Age �.018 (2) �.011 (1) �.008 (1) �.008 (1)
�0p Level–Practice �.097 (3) �.098 (2) �.113 (2)
�ap Age–Practice .002 (1) .002 (1) .002 (1)
� e

2 Residual variance .704 (20) .200 (28) .156 (23) .137 (24) .131 (24)

Goodness of fit

Likelihood (�2 log-likelihood) 2,061 5,162 4,716 4,542 4,511
No. of parameters 4 6 10 10 12

Note. Values in parentheses indicate t (for fixed effects) or z (for random effects) values in absolute terms. (�)
indicates a fixed parameter. (?) indicates a parameter whose standard errors were not identified. All parameters
are maximum-likelihood estimates from SAS PROC MIXED and NLMIXED.
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�.036, and �.043, for memory, space, and speed, respectively). In
addition, the residual term suggests there is a substantial amount of
residual variance unexplained by the model (�e

2 � .704, .516, and
.463, respectively), which is largest for memory and smallest for
speed.

In the next set of analyses, we examined a series of age-based
mixed models (i.e., including both within-person and between-
persons information) to identify the age function that best de-
scribed the different cognitive abilities over time (i.e., modeling
data in the top panels of Figures 1, 2, and 3). These models
included a model of no growth, a linear age model (with age
centered at 39.9, the youngest age), and a quadratic age model.
Compared with a model of no growth, adding a linear age term
(Equation 1) improved the fit substantially for both space and
speed (��2/�df � 206/3 and 111/3, respectively). This, however,
was not true for memory (��2/�df � 3/3). In contrast to the
cross-sectional model, the estimates for memory from this linear
model suggest a flat trajectory over age (�a � 0) with almost no
variation across persons (�a

2 � .001) and a large residual (�e
2 �

.200) representing unexplained within-individual variation. The
lack of age-related effects in this case reflects the opposite patterns
of within-person change (positive, in bottom right panel of Figure
1) and between-persons differences (negative, in bottom left panel
of Figure 1), which cancel one another out.

For the space and speed variables, the estimates from the linear
age model are similar to the cross-sectional estimates, reflecting
weaker within-person changes (as in the bottom left panels of
Figures 2 and 3). Although the age estimates for both variables are
reduced in magnitude (�a� �.023 and �.033 for space and speed,

respectively), they still indicate declines in cognition over age with
small (for speed) or no detectable (for space) variation across
people. These results are presented in the second columns of
Tables 3, 4, and 5.

For the three variables, a quadratic relation of age was detect-
able, although with a small parameter estimate (�a

2 � �.001;
estimates not presented in tables). When compared with a linear
model, this quadratic model yielded a better fit for the memory and
speed variables, (��2/�df � 152/4 and 210/4, respectively) but not
for the space variable (��2/�df � 7/4). These results indicate that
there is a small decline in cognitive abilities over age, which seems
to accelerate as individuals get older. For the space variable,
however, the decline seems to be uniform over age. Although
informative, these results do not take into account retest effects, so
the potential within-person changes that are due to such effects are
incorporated into the age effects. That is, ignoring practice effects
may be biasing the estimates of the age effects. In the next set of
analyses, we incorporated both terms in the models to examine
their separate contributions.

Age- and Occasion-Based Mixed Growth Analyses

The results from the analyses estimating both age and retest
effects are presented in the last three columns of Tables 3, 4, and
5. The first model posited a linear function for age and practice
effects that take place at the first retest and remain constant
thereafter (basis P[t] � 0, 1, 1, 1). When comparing the fit of this
model with a linear model without practice (i.e., ��2 log-

Table 4
Age-Based Mixed Growth Model Parameters for Space

Parameter
Age [t0]

cross-sectional
Age [tt]

longitudinal
Age [tt] �
1st retest

Age [tt] �
linear retest

Age [tt] �
latent practice

Fixed effects

�0 Intercept .596 (10) .450 (8) .508 (9) .644 (11) .670 (11)
�a Linear age �.036 (11) �.023 (8) �.031 (10) �.040 (13) �.040 (13)
�p Practice .118 (7) .258 (13) .239 (11)

�p[1] 0 (�) 0 (�) 0 (�)
�p[2] 1 (�) .33 (�) .111 (1)
�p[3] 1 (�) .66 (�) .869 (11)
�p[4] 1 (�) 1 (�) 1 (�)

Random effects

� 0
2 Intercept .000 (?) .374 (7) .387 (6) .451 (4) .517 (4)

� a
2 Linear age .000 (0) .000 (0) .000 (0) .000 (0)

� p
2 Practice .007 (0) .012 (1) .026 (1)

�0a Level–Age .002 (1) .001 (0) �.002 (0) �.006 (1)
�0p Level–Practice .014 (1) .024 (1) �.022 (1)
�ap Age–Practice .007 (1) .000 (0) .001 (1)
� e

2 Residual variance .516 (20) .117 (30) .114 (23) .108 (25) .102 (25)

Goodness of fit

Likelihood (�2 log-likelihood) 1,813 3,940 3,881 3,772 3,746
No. of parameters 4 6 10 10 12

Note. Values in parentheses indicate t (for fixed effects) or z (for random effects) values in absolute terms. (�)
indicates a fixed parameter. (?) indicates a parameter whose standard errors were not identified. All parameters
are maximum-likelihood estimates from SAS PROC MIXED and NLMIXED.
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likelihood) there was a substantial improvement in fit (��2/�df �
446/4, 59/4, and 28/4, for memory, space, and speed, respectively).
The estimates from this model indicate age-related declines for all
variables (�a � �.023, �.031, and �.040, respectively) with very
small variation across individuals. With each variable, there is a
detectable improvement in performance at the first retest (�p �
.409, .118, and .089, respectively), with individual variation for
speed only (�p

2 � .067). Compared with a model with no retest,
this model reduced the residual variance for all variables, although
this was more apparent for memory, the variable with the largest
within-person changes.

The next model tested linear functions for both age and practice.
That is, it extended the previous model by examining whether
retest effects occurred after the second measurement occasion.
This model resulted in improved fit for all variables (��2/�df �
174/0, 109/0, and 127/0, respectively), suggesting that retest ef-
fects took place not only at the second occasion but also at
subsequent assessments. To examine whether the fit improvement
was primarily due to effects of practice on the mean or to effects
on the between-persons variability, we entered these terms sepa-
rately. For memory and space, the improvement was due primarily
to the mean (��2/�df � 593/1, 155/1), with a minor contribution
by the variance terms (��2/�df � 21/3, 7/3). For speed, however,
the improvement was mostly due to the variance components
(��2/�df � 240/3) and not so much due to the mean (��2/�df �
9/1), suggesting that although the overall retest mean was small,
there was substantial individual variation around it. Finally, we

examined whether adding a quadratic age function to the model
improved the fit further. This was the case for speed (��2/�df �
25/5) but not for memory or space (��2/�df � 3/5 and 2/5,
respectively). Moreover, for all three variables, the estimate for a
quadratic age effect was near zero (�a

2 � �.001). On the basis of
these results and a desire to have comparable analyses across the
three cognitive variables, we decided not to examine further mod-
els with quadratic age effects.

The results from a model with linear terms for age and retest are
displayed in the fourth columns of Tables 3, 4, and 5. For memory
(see Table 3), these results yielded an average initial score (�a �
.604) at 39.9 years (the point at which age is centered), with
variation around this estimate (�0

2 � .647). That is, the initial score
for 95% of individuals ranged from �1.01 to 2.21 (i.e., .604  2
�.647). The estimate for age (�a � �.035) indicates that, on
average, individuals’ performance in memory declines by this
amount per year, without apparent variation across individuals (�a

2

� 0). The estimate for practice (�p � .619) suggests that as
individuals repeat the memory assessment, their performance in-
creases. The coding for the linear practice effect was P[t] � 0, .33,
.66, 1, so this estimate represents an overall improvement that is
uniform across the four occasions. Although not large, some
individual variation in this effect is detectable (�p

2 � .090). The
only significant covariance is between initial level and practice
(�0p � �.098), suggesting that the retest effect is smaller for those
individuals who started at higher initial levels.

Table 5
Age-Based Mixed Growth Model Parameters for Speed

Parameter
Age [t0]

cross-sectional
Age [tt]

longitudinal
Age [tt] �
1st retest

Age [tt] �
linear retest

Age [tt] �
latent practice

Fixed effects

�0 Intercept .696 (12) .604 (13) .671 (14) .661 (13) .681 (13)
�a Linear age �.043 (14) �.033 (12) �.040 (14) �.037 (11) �.040 (13)
�p Practice .089 (6) .062 (3) .087 (4)

�p[1] 0 (�) 0 (�) 0 (�)
�p[2] 1 (�) .33 (�) .477 (24)
�p[3] 1 (�) .66 (�) .700 (19)
�p[4] 1 (�) 1 (�) 1 (�)

Random effects

� 0
2 Intercept .000 (?) .262 (4) .302 (5) .421 (4) .347 (4)

� a
2 Linear age .001 (4) .001 (3) .002 (3) .001 (3)

� p
2 Practice .067 (6) .087 (7) .247 (10)

�0a Level–Age �.005 (1) �.007 (1) �.015 (2) �.010 (1)
�0p Level–Practice �.016 (1) �.108 (3) .112 (3)
�ap Age–Practice .001 (1) .008 (4) �.008 (3)
� e

2 Residual variance .463 (20) .082 (29) .063 (23) .053 (24) .050 (23)

Goodness of fit

Likelihood (�2 log-likelihood) 1,723 3,280 3,252 3,125 2,999
No. of parameters 4 6 10 10 12

Note. Values in parentheses indicate t (for fixed effects) or z (for random effects) values in absolute terms. (�)
indicates a fixed parameter. (?) indicates a parameter whose standard errors were not identified. All parameters
are maximum-likelihood estimates from SAS PROC MIXED and NLMIXED.
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The next model considered a latent practice term, representing
practice effects that are unequal across occasions. For this purpose,
we relaxed the practice loadings at the second and third occasions
(P[t] � 0, ?, ?, 1). Relaxing these two parameters improved the fit
(��2/�df � 31/2; �RMSEA � .133), which suggests that the
practice effects for memory are not equal across measurement
occasions. The parameter estimates from this model confirmed this
point. Although the overall practice effect across all occasions was
the same (�p � .619) as in previous models, the practice loadings
indicated that about 48% of this effect takes place at the second
assessment (�p[2] � .482), with smaller effects at the third and
fourth occasions (25% and 27%, respectively). By comparing the
results from this model with those from a baseline model (i.e., a
random intercept model), one can obtain the proportions of
between- and within-person variance that are explained by this
model (see Raudenbush & Bryk, 2002). For memory, such pro-
portions are 18% and 32%, respectively.

The same sets of analyses were conducted for the space and
speed variables, and the respective results are presented in Tables
4 and 5. For both cognitive abilities, these analyses yielded neg-
ative age effects and positive practice effects. Whereas the former
effects were similar in magnitude to the effects found for the
memory variable, the latter effects were smaller for space and
close to zero for speed, reflecting near symmetry of lines above
and below zero in the bottom right panels of Figures 2 and 3. Also
for both abilities, a model with a nonlinear practice effect yielded
a better fit than a linear practice specification, and this improve-
ment was much more apparent for speed (��2/�df � 26/2,
�RMSEA � .121 for space; ��2/�df � 126/2, �RMSEA � .275
for speed). For space, the estimates for a linear age and latent
practice model indicate that performance decreases slightly as a
function of age (�a � �.040), without perceptible variation across
persons (�a

2 � 0). Moreover, there is an overall practice effect
across the four occasions (�p � .239), which does not seem to vary
across individuals, and most of this effect takes place at the third
occasion (�p[3] � .869; 76%). The estimated percentages of
between- and within-person variance explained by this model are
5% and 18%, respectively.

The interpretation of the estimates for speed is similar (see
Table 5). Performance in this cognitive ability shows a decrease
over age (�a � �.040), with a very small variation across persons
(�a

2 � .001). The overall practice effect is small (�p � .087), but
there is substantial variation across persons in this effect (�p

2 �
.247). Furthermore, about 48% of the practice-related improve-
ment seems to occur at the first retest (�p[2] � .477), whereas
about 22% and 30% take place at the third and fourth occasions,
respectively. Compared with a baseline model, this model explains
26% and 39% of the between- and within-person variance,
respectively.

To investigate whether individuals benefit differently from prac-
tice depending on their age, we examined a possible Age �
Practice interaction as represented in Equation 8. A model includ-
ing an Age � Practice interaction did not improve the fit of a
model without the interaction for any of the abilities. Moreover,
the estimate for the interaction term was not different from zero for
memory (�int � 0) and was very small for space and speed (�int �
�.007 and �.010, respectively). This result suggests that there are
similar retest effects across the age range from 40 to 74 years for
these variables. This finding can be seen in the bottom right panels

of Figures 1, 2, and 3, in which the within-person changes appear
to be similar across the age range.

Age- and Occasion-Based Mixed Growth Models Across
Groups

To identify possible group differences, we divided the sample
into three age groups (� 50 years, 50–59 years, and � 60 years)
and fitted a series of models to examine invariance across them.
The first model constrained all the parameters to be equal across
the groups (i.e., fixed to the values for the pooled sample). This
model tested the extent to which the linear age and latent practice
components found for the overall sample held across the three
groups. Subsequent models relaxed parameters to be free across
groups until all five fixed effects (i.e., intercept, age slope, practice
slope, and two basis coefficients) were allowed to differ across
groups. For memory, this least restrictive model did not improve
on the fit of a full invariant model (��2/�df � 21/15), with the
relative misfit per group (��2/�df � 3/5, 13/5, and 5/5, respec-
tively) indicating a minor improvement for the second group only.
Similar invariant results were found for space (��2/�df � 14/15),
with no differences in misfit across groups. For speed, however,
invariance across age groups did not hold (��2/�df � 118/15),
with improvement in fit being detectable for all age groups (��2/
�df � 60/5, 21/5, and 37/5, respectively). Additional analyses
using less restrictive models indicated differences in the practice
variance across groups but not in the variance terms for the
intercept or the age effects. Estimates from this least restrictive
model are presented in Table 6.

The results from the multiple-group analyses suggest that for the
memory and space variables, the results obtained from the overall
sample apply to all age groups. For speed, however, this does not
seem to be true, and differences in fixed and random effects are
detectable across groups. Such differences indicate that age effects
are most pronounced for older individuals, reflecting a quadratic
age function, and retest effects are most apparent for younger

Table 6
Estimates From a Linear-Age and Latent-Practice Model Across
Age Groups for Speed

Parameter � 50 years 50–59 years � 60 years

�00 Intercept .452 (6) .360 (2) 1.110 (3)
�10 Linear age �.019 (1) �.012 (1) �.061 (4)
�01 Latent practice .082 (2) .010 (0) .077 (1)

�p[1] 0 (�) 0 (�) 0 (�)
�p[2] 1.164 (8) .481 (16) .232 (4)
�p[3] .877 (7) .591 (11) .729 (12)
�p[4] 1 (�) 1 (�) 1 (�)

� p
2 Practice .128 (4) .291 (11) .256 (8)

� e
2 Residual variance .039 (9) .035 (16) .065 (15)

�2 log-likelihood 516 1026 1268
��2/�df a 69/6 24/6 37/6

Note. Values in parentheses indicate t values in absolute terms. (�)
indicates a fixed parameter. Random parameters are not shown but were
fixed at values for the overall sample (as in Table 5). Sample sizes are as
follows: Group A � 181, Group B � 357, Group C � 289. �p[1] � 0 and
�p[4] � 1 are fixed values. All parameters are maximum likelihood esti-
mates from SAS PROC NLMIXED.
a ��2/�df in relation to a full invariant model.
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individuals, with most effects occurring at the first retest (i.e.,
�p[2] � 1.16, indicating that the retest effect at this occasion
exceeded the value at the final occasion, �p[4] � 1). Although no
average retest effects are apparent for the older groups, such
effects exist for some older individuals, and these effects seem to
materialize later than those for the younger individuals. The results
from this last set of analyses can be translated into curves for each
variable. Such latent curves—with 95% confidence intervals—are
plotted in Figure 5 and represent the expected trajectory for each
variable and age group based on the combined effects of age and
retest.

Discussion

Summary of Findings

In the current report we examined the possibility of modeling
age and retest as separate processes underlying changes in cogni-
tive abilities. The findings of our analyses indicate that both age
and retest should be modeled simultaneously when analyzing
longitudinal data in which practice effects may occur because of
repeated assessments. Under these conditions, ignoring the retest
process in the model tends to underestimate the age effects, with
more severe bias occurring when retest effects are larger. In such
models, the age estimates need to capture all changes that are due
to both age and retest, and if the retest effects are positive, the true
age effects will be underestimated.

We illustrated these effects in our analyses by fitting various
models to three different composite variables. In the case of the
memory variable, there was substantial improvement with retest,
and thus the age estimate was negligible when the analytic model
did not include retest effects. When such effects were part of the
model, however, the age effects were negative and were accom-
panied by positive retest effects. In other words, this model indi-
cated that memory declines with increased age but that these
effects can be masked by improvement that takes place with
repeated assessments. The difference in the age estimates between
models with and without retest was much smaller for the space
variable and almost trivial for the speed variable, because the retest
effects were much smaller. Rabbitt et al. (2001) cautioned about
longitudinal studies in which practice effects are ignored because,
they argued, the true rates of cognitive decline are underestimated.
Our findings are in line with this contention and further show that
the bias will depend on the magnitude of the omitted practice
effects, which can vary across variables.

There are several possible causes of the retest effects found in
these analyses. First, given that the battery was administered in
exactly the same way at all occasions, it is likely that part of the
retest effects was due to the fact that some of the test items were
actually remembered after the first test occasion. Second, more
general factors such as increased familiarity with the testing situ-
ation and/or decreased test anxiety could also be responsible for
the retest effects. Such general factors would presumably affect
retest scores on a memory test even if the test was repeated with a
new set of items, and general factors may be the main source of
retest effects on speed tests in which familiarity with the test items
should have less of an effect. The discovery of greater retest effects
for memory may be due to a combination of item-specific and
general effects.

One goal of our analyses, in addition to separating age and retest
processes, was to examine the relative impact of retest at each
measurement occasion. For all the variables, our results indicate
that practice took place not only at the first retest but at subsequent
assessments as well, with unequal improvements across intervals.
For the memory and speed variables, about half of all the retest
effects occurred at the second assessment, with the rest of the
effects distributed across the third and fourth assessments. For the
space variable, however, retest effects were most apparent at the
third measurement occasion (i.e., about 87%), with some addi-
tional effects at the fourth assessment. These results showing
practice effects across the four measurement occasions are in line
with the Rabbitt et al. (2001) findings in which performance in a
fluid ability measure improved over the course of four assess-
ments, independently from negative age effects. Like the case for
the memory and speed variables in our analyses, in the Rabbitt et
al. study, about half of the practice effects occurred at the second
assessment, with perceptible but decreasing effects across the third
and fourth occasions.

Our findings are also similar to results reported by Wilson et al.
(2002) in a study of cognitive decline among older individuals. In
the Wilson et al. study, individuals’ performance in several cog-
nitive domains improved at the first retest, with larger improve-
ments for word generation. Improvement at the second retest was
also found for measures of word generation, perceptual speed, and
visuospatial ability, and an additional increment at the third retest
was found for word generation and perceptual speed. Also similar
to our findings, when a term for practice effects was included in
the Wilson et al. analyses, the estimates of negative age effects
increased for all measures. Our results, however, depart somewhat
from the results of other important longitudinal studies reporting
smaller practice effects (Hultsch, Hertzog, Dixon, & Small, 1998;
Schaie, 1988). Possible reasons for these differences are the se-
lected and more homogeneous sample in the current study (i.e.,
men between 40 and 70 years of age) and the smaller retest
intervals.

To test for differences in age and retest effects across age
groups, we conducted separate analyses for different groups. These
analyses were helpful in identifying how age and practice pro-
cesses that underlie cognitive changes differ as a function of age.
The findings here revealed that for memory and space, both age
and retest effects were similar across different age groups. For
speed, however, pronounced age effects were found for individuals
60 years old and older, and practice effects were apparent for
younger individuals (i.e., individual variation in retest was present
at all ages). It is unclear whether the current results would hold if
the retest intervals were expanded or the age range of the partic-
ipants was extended. For example, it is possible that with longer
retest intervals, retest effects that reflect item-specific influences
would decrease, especially for older adults. Another possibility is
that with longer retest intervals, retest effects that reflect learning
through repetition would decrease, especially for older adults. In
addition, the relatively low mean age of the adults in the oldest
group (67.5 years at Time 4) could also have biased the findings
toward comparable retest effects across age groups. In line with the
Rabbitt et al. findings (2001), our results suggest that benefits from
retest that are likely due to learning through repetition apply to
persons of all ages, even to those who show a marked cognitive
decline. If possible retest effects are likely to differ by age, we
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suggest that an Age � Retest interaction be included in the
analytic model. If it is found that younger adults benefit from
retests more than do older adults, then correcting for retest effects
may reduce the magnitude of the age differences because the extra
advantage of younger adults is eliminated.

The results from our models indicate that there was a small
variation in the slope for age across persons and variables. That is,
based on our analyses, all individuals seemed to follow a similar
age-related rate of decline. This was true even for models that did
not include a term for retest effects, which suggests that the
variation in retest did not absorb the variance in age. It is likely that
this lack of variation was caused by the relatively short retest
intervals and the relatively homogeneous sample. This interpreta-
tion would also help explain why the retest estimates were larger
in studies that involved individuals of similar ages but larger retest
intervals (e.g., McArdle & Anderson, 1990; Rabbitt et al., 2001).

Methodological Issues

Our main purpose in this report was to model separate age and
retest effects in studies involving repeated assessments. This sep-
aration is difficult in the presence of a high correlation between the
increment in age and the increment in retest occasions. Possible
remedies for this confounding are a large variation in retest and a
wide age range. The retest intervals in this study were close to 1
year, so the data are not optimal for the unequivocal separation of
age and retest effects. The age range, however, was wide, ranging
from 40 to 74 years. This feature allowed us to weaken the
age–retest correlation and to model separate processes for age and
retest. In the raw data, the correlation between age and retest
occasion across persons and variables was .80. In the analyses,
however, the correlations between estimates of age effects and
effects associated with successive retests were significant in some
models of processing speed only.

In addition to separating age and retest effects, we were able to
model individual variation in both age and retest without imposing
constraints in the models, although the estimates of individual
differences in age-related effects were small. The addition of
practice to the model, including its random component, did not
alter the variance term for age, so all age effects represented
longitudinal slopes with variation across individuals. It is impor-
tant to note, however, that these age effects were strongly influ-
enced by the relatively short length of the retest intervals and
possibly by the age–retest correlation. Because of this condition,
the age effects primarily represent between-persons information
and not much within-person change in age. The retest effects, on
the other hand, are a completely within-person effect, and they
could be estimated fairly precisely with multiple occasions and
models with different growth functions.

The models used in our analyses rely on a convergence assump-
tion (Bell, 1953) by which individuals of different age cohorts are
followed over time. From this data structure with incomplete
observations, one can model an overall trajectory for all persons as
long as there is enough overlap or convergence in the trajectories
of the different cohorts. This approach has been used (e.g., Dun-
can, Duncan, & Hops, 1996; McArdle & Bell, 2000) even under
conditions of severe incomplete data (e.g., McArdle et al., 2002).
In our analyses, this assumption, together with the wide age range,
allowed us to estimate average age and retest effects as well as

individual variation around those effects. The age effects repre-
sented an ongoing process from ages 40 to 74, although no
individual in the study was actually measured across the entire
range. The retest effects, in contrast, represented a process that
occurred throughout the four measurement occasions. The
multiple-group analyses indicated that the convergence assump-
tion is reasonable for memory and space but does not hold for
speed. For this variable, the effects associated with age and retest
are not equal for all ages.

All models in this report were fitted to all the available data
under an assumption of random dropout. This untested assumption
is important in longitudinal studies. Attrition is likely to be selec-
tive in that individuals who continue are healthier, more motivated,
and higher functioning than are those who discontinue their par-
ticipation (Baltes & Mayer, 1999; Baltes, Reese, & Nesselroade,
1977; Hultsch et al., 1998; Schaie, 1996; Siegler & Botwinick,
1979). Although formal attrition analyses were not conducted, we
repeated the main analyses with individuals who had complete
data on all four measurement occasions (N � 492). Compared with
the overall sample, those individuals who remained throughout the
study had higher baseline scores but similar age effects for all
variables. Practice effects were smaller for the memory and speed
variables and larger for the space variable in this group, compared
with the overall sample. Across all variables, the discrepancies in
the estimates from the complete and incomplete samples were
small. Future studies, however, could formally examine selective
dropout as a function of each assessment, the number of occasions,
and other selection conditions (e.g., Hedeker & Gibbons, 1999).

Future Research

The analyses reported here represent only a small set of possi-
bilities for examining the effects of age and practice in studies of
cognitive abilities. There are many ways in which these analyses
can be expanded to accommodate more complex questions. For
example, in our main analyses we used a linear function for age for
all the models. Although a quadratic function fit slightly better, we
decided to retain the linear trend for convenience, mainly to avoid
overparameterization of the models. However, more complex age
functions may be needed, especially for data with larger age ranges
(McArdle et al., 2002).

A logical extension of the current analyses would be to apply
multivariate models that consider different cognitive abilities si-
multaneously. One possible approach would involve examining
how the changes in two or more variables may relate to each other
(e.g., Goldstein, 1995; Willett & Sayer, 1994) and how they relate
under different models of change (Ferrer & McArdle, 2002). One
could also investigate whether the age and practice effects under-
lying the changes in each ability could be best described by
changes in a higher order cognitive factor (as in McArdle, 1988;
McArdle et al., 2002; McArdle & Woodcock, 1997). Another
approach would be to examine the dynamics underlying changes in
the cognitive abilities to identify time-lag sequences among the
variables (Ferrer & McArdle, 2003; Hamagami & McArdle, 2001;
McArdle, 2001; McArdle & Hamagami, 2001). In all these mul-
tivariate possibilities, the within-person changes may reflect both
age and practice processes. If so, the changes in two variables can
correlate because of age or practice, and these two components
will bring different meaning to the correlation. Thus, modeling age
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and practice separately in multivariate approaches is important
before interpreting correlations of change across variables.

Because of the short retest intervals in our study, the general-
ization of results about age and practice effects may be limited to
studies with similar intervals. Other attempts should be made with
data involving longer and more variable retest intervals, different
cognitive abilities, and individuals of more different ages, as all
these factors may influence age and retest differently (Cattell,
1957; McArdle & Woodcock, 1997). A potential benefit from such
studies would be the establishment of guidelines about the number
of measurement occasions and the optimal length of retest inter-
vals needed to avoid contamination between practice and matura-
tion, thus enabling researchers to better capture aging processes.
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