Effects of First Occasion Test Experience on Longitudinal Cognitive Change

Timothy A. Salthouse
University of Virginia

It is widely recognized that change in performance on cognitive tests can be influenced by maturational factors and by factors associated with prior testing experience. That is, both time-related developmental processes and reactive effects associated with the initial assessment can contribute to the change in cognitive functioning from a first to a second assessment. Because the interpretations could be quite different if increased age, diseases, or interventions primarily affect the amount of benefit associated with an initial assessment as opposed to time-related change processes, it is important to try to distinguish these influences.

Three major approaches have been used to distinguish contributions of the two components. One approach (e.g., Ferrer, Salthouse, McArdle, Stewart, & Schwartz, 2005; Ferrer, Salthouse, Stewart, & Schwartz, 2004; Rabbitt, Diggle, Holland, & McInnes, 2004; Rabbitt, Diggle, Smith, Holland, & McInnes, 2001) is based on the assumption of different functions for test experience (e.g., step function with coefficients of 0, 1, and 1 representing three successive occasions), and for developmental processes (e.g., linear function with coefficients of 1, 2, and 3 representing three successive occasions). An advantage of this approach is that it can be applied in traditional longitudinal studies with three or more occasions, and it is potentially applicable at the level of individuals and not merely at the level of groups. The primary disadvantage of the dual-function approach is that the assumption of different functions is seldom directly tested, and little is known about possible invariance of the functions across participants, cognitive abilities, and intervals between occasions.

A second approach used to distinguish the two contributions is based on a special type of longitudinal study in which the interval between testing occasions varies across individuals (e.g., McArdle, Ferrer-Caja, Hamagami, & Woodcock, 2002; Salthouse, 2009; Salthouse, Schroeder, & Ferrer, 2004). In a traditional longitudinal study the interval is approximately the same for all participants, which has the consequence of producing a nearly perfect correlation between the increase in age and the increase in test experience. However, the correlation can be reduced, and the two influences potentially distinguished, if people vary in the intervals between occasions. An advantage of the variable-interval approach is that it can be used with longitudinal data involving only two occasions, but disadvantages are that the variability in the intervals has to be incorporated into the research design, and the age-experience correlation will still be high unless the range of longitudinal intervals is quite large.

A third approach used to separate test experience influences from time-related influences is also based on a modification of the typical longitudinal study, in this case by adding a new sample of participants who are tested for the first time when the original longitudinal participants are tested at the second time (e.g., Ronnlund et al., 2005; Ronnlund & Nilsson, 2006; Ronnlund, Nyberg, Backman, & Nilsson, 2005; Salthouse, 2009, 2010a; Schaie, 1988). If the groups are truly comparable except for the prior test experience, the difference in their performance provides an estimate of the effects of test experience. The major advantage of this approach is its conceptual simplicity, but disadvantages are that the addition of another sample of participants increases the cost and complexity of the research, and it can be difficult to establish that the groups are equivalent in all respects except for the prior test experience.

Little is known about the relations among the test experience estimates derived from different procedures because apparently only one study has applied more than one approach in the same
data, and the estimates based on the different methods were somewhat variable (i.e., Salthouse, 2009). Although analyses with all three types of approaches have generally revealed positive estimates of test experience, the results have been inconsistent with respect to age differences. That is, Salthouse (2010a) found somewhat smaller retest estimates at older ages; little or no age differences in retest effects were reported by Ferrer et al. (2004, 2005), Ronnlund et al. (2005), Ronnlund and Nilsson (2006), and Schae (1988); and Rabbitt et al. (2004) reported larger retest effects at older ages.

The current project used a novel procedure to investigate the contribution of test experience on cognitive change by capitalizing on the variation in test experience at the first occasion among participants within the Virginia Cognitive Aging Project (VCAP: Salthouse, 2009, 2010a, 2011). All participants described in this report came to the laboratory for three sessions at each of two occasions separated by an average of about 2.5 years. The second occasion was identical for all participants and involved different versions of the same tests on three successive sessions. However, the participants differed with respect to the nature of their experience on the first occasion. Some of the participants performed three versions of the same tests on successive sessions. The remaining participants performed the reference VCAP tests on the first session in the first occasion but performed other tests on the second and third sessions in that occasion. These individuals therefore had the same amount of social contact and overall test experience as the individuals with three versions of the same tests, but different tests were performed on the second and third sessions. The other tests were designed to assess fluid intelligence (Salthouse, Pink, & Tucker-Drob, 2008), source memory (Siedlecki, Salthouse, & Berish, 2005), prospective memory (Salthouse, Berish, & Siedlecki, 2004), executive functioning (Salthouse, 2010b; Salthouse, Atkinson, & Berish, 2003), cognitive control (Salthouse, Siedlecki, & Krueger, 2006), and language production (Rabaglia & Salthouse, 2012). Assignment of participants to one or three versions at T1

Characteristics of the participants with one and three versions of the critical tests at T1 are summarized in Table 1. In most respects the samples with one and three versions at T1 were similar, with the exception of slightly higher (poorer) self-ratings of health, lower word recall scaled scores, and a longer average interval between the T1 and T2 occasions in the group with only one T1 version. Analyses of variance on the measures in Table 1 with age decade and number of T1 versions as factors revealed that none of the interactions was significant.

Although VCAP participants can be considered a convenience sample because they were all community volunteers, their representativeness can be evaluated in terms of scores on standardized tests that have been normed in nationally representative samples. Scaled scores from the Vocabulary and Digit Symbol subtests in the Wechsler Adult Intelligence Scale (3rd ed.; Wechsler, 1997a) and from the Logical Memory and Word Recall subtests in the Wechsler Memory Scale (3rd ed.; Wechsler, 1997b) were used for this purpose. The age-adjusted scaled scores have a mean of 10 and a standard deviation of 3 in the normative sample, and thus the values in Table 1 indicate that individuals in the current sample were functioning above average relative to the nationally representative normative sample. There were small but significant positive correlations between age and the scaled scores (ranging from .11 to .18), which raises the possibility that age relations in the current study may be underestimated, because relative to their age peers, the older adults had higher levels of functioning than the younger adults.

Table 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>One T1 version</th>
<th>Three T1 versions</th>
<th>d</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>878</td>
<td>685</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (in years)</td>
<td>51.1 (15.1)</td>
<td>52.1 (16.1)</td>
<td>.06</td>
<td>.22</td>
</tr>
<tr>
<td>Proportion female</td>
<td>.67</td>
<td>.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-rated health</td>
<td>2.0 (0.8)</td>
<td>2.3 (0.9)</td>
<td>.36</td>
<td>.00</td>
</tr>
<tr>
<td>Years of education</td>
<td>15.8 (2.6)</td>
<td>15.7 (2.6)</td>
<td>0</td>
<td>.63</td>
</tr>
<tr>
<td>T2 MMSE</td>
<td>28.8 (1.5)</td>
<td>28.6 (1.5)</td>
<td>-.13</td>
<td>.11</td>
</tr>
<tr>
<td>Scaled scores</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vocabulary</td>
<td>12.8 (3.0)</td>
<td>12.7 (2.9)</td>
<td>-.03</td>
<td>.48</td>
</tr>
<tr>
<td>Digit Symbol</td>
<td>11.5 (2.9)</td>
<td>11.4 (2.7)</td>
<td>-.04</td>
<td>.33</td>
</tr>
<tr>
<td>Logical Memory</td>
<td>12.1 (2.8)</td>
<td>11.9 (2.8)</td>
<td>-.07</td>
<td>.15</td>
</tr>
<tr>
<td>Word Recall</td>
<td>12.7 (3.1)</td>
<td>12.2 (3.5)</td>
<td>-.15</td>
<td>.00</td>
</tr>
<tr>
<td>T11–T21 (years)</td>
<td>2.9 (1.2)</td>
<td>2.5 (0.9)</td>
<td>-.37</td>
<td>.00</td>
</tr>
</tbody>
</table>

Note. T1 = Time 1; T2 = Time 2; T11 = Time 1 Session 1; T21 = Time 2 Session 1; MMSE = Mini-Mental State Exam (Folstein, Folstein, & McHugh, 1975). Values in parentheses are standard deviations. Health was a self-rating on a scale from 1 (excellent) to 5 (poor). Scaled scores are adjusted for age and have means of 10 and standard deviations of 3 in the nationally representative normative samples (Wechsler, 1997a, 1997b). The d column contains Cohen’s d estimates of effect size.

The primary question examined in this study was whether additional experience with different versions of the same tests on the first (T1) occasion affected the magnitude of change from the first to the second occasion and, if so, whether these experience effects varied with the age of the research participant.

Method

Sample

The participants in this study were VCAP participants between 18 and 80 years of age who completed at least two occasions and had Mini-Mental State Exam (Folstein, Folstein, & McHugh, 1975) scores above 23 at the second occasion. Participants were recruited by newspaper advertisements, flyers, and referrals from other participants, and they were paid for their participation. The initial (T1) participation occurred between 2001 and 2009, with the second (T2) participation occurring between one and 10 years later. The interval between occasions was varied across participants to allow increases in test experience to be distinguished from increases in age (e.g., Salthouse, 2009) and to investigate the

relation between longitudinal interval and change at different ages (Salthouse, 2011). The correlation of age with the length of the interval was only -.03 each in the groups with one and three test versions at T1.
tioning individuals, were more likely to have moved—exhibited the reverse pattern (Salthouse, 2010a).

Measures

The tests were recently described in Salthouse (2012b, p. 20) as follows:

Sixteen different cognitive tests selected to represent five cognitive abilities were administered at each occasion (see Salthouse, 2004; Salthouse & Ferrer-Caja, 2003; Salthouse et al., 2008). Vocabulary ability was assessed with Definition Vocabulary, Picture Vocabulary, Synonym Vocabulary, and Antonym Vocabulary tests; reasoning ability was assessed with a Matrix Reasoning test, a Series Completion test, and a test requiring identification of unique letter sets; spatial-visualization ability was assessed with Spatial Relations, Paper Folding, and Form Boards tests; memory ability was assessed with Word Recall, Paired Associates, and Logical Memory tests; and perceptual-speed ability was assessed with Digit Symbol, Pattern Comparison, and Letter Comparison tests. Prior research established that the tests were all reliable and valid in the sense that they had moderate to high loadings on their respective ability factors; very similar patterns in factor loadings for adults of different ages indicated that the tests had equivalent validity across ages (e.g., Salthouse, 2004; Salthouse & Ferrer-Caja, 2003; Salthouse et al., 2008).

All participants completed three sessions within a period of about 2 weeks at each occasion. The sessions were designated by occasion and session, with the first session on the first occasion labeled T11, the second session on the first occasion labeled T12, and the third session on the second occasion labeled T13. The test versions performed on successive sessions were identical in format, but involved different items. Because the across-version correlations were greater than .8 for composite scores formed by averaging z-scores for the tests representing each ability and close to 1.0 for latent constructs (Salthouse, 2012a), the different versions can be assumed to be nearly identical in terms of the dimensions of individual differences that were assessed.

The participants with only one version of the relevant tests on the first occasion also completed three sessions within a period of about 2 weeks. However, different types of tests were performed on the second (T12) and third (T13) sessions. The specific tests varied across test years, but because they all differed from the VCAP reference tests, the participants performing other tests in the T12 and T13 sessions were combined into a single group distinguished from the other group of participants by having performed only one version instead of three versions of the reference tests on the first occasion.

Results

In order to facilitate comparisons across tests, all scores were converted into z-score units based on the distribution of T11 scores. Some of the analyses were based on composite scores formed by averaging the z-scores of the tests representing the respective cognitive ability. Initial analyses examined linear and quadratic age relations on the T2–T1 difference scores in the groups with one and three T1 versions. With the exception of reasoning ability in the group with one T1 version, all linear age relations were significant, but none of the quadratic age relations was significant.

Two primary sets of analyses were conducted; analyses of variance (ANOVAs) on the longitudinal changes in composite scores with age treated as a categorical variable by grouping participants into age decades and latent change analyses with age treated as a continuous variable. Because the groups with one and three T1 versions differed in self-rated health, the word recall scaled score, and in the length of the T1–T2 interval (cf. Table 1), these variables were included as covariates in the analyses of variance. (Results without the covariates were nearly identical, with the same pattern of significant and nonsignificant relations.) A multivariate analysis of variance (MANOVA) with the five composite score differences as dependent variables revealed significant effects of age decade and number of T1 versions but no significant interaction, and therefore separate analyses were conducted with each ability composite score.

Results of the ANOVAs on the T21–T11 differences in the composite scores are presented in Table 2, where it can be seen that there were significant effects of age decade on all abilities except reasoning. There were also significant effects of number of versions at T1 on the longitudinal change in memory, speed, and spatial visualization abilities, but not in vocabulary or reasoning abilities. Of primary interest were the interactions of age decade and number of versions, and all of these interactions were very small, and not significant for any ability. A post hoc power analysis based on the smallest sample of 1,093 (corresponding to the smallest sample across the five composite scores) revealed that the power to detect a small \(F = 0.10 \) effect size was .91 with an alpha of .05, and .77 with an alpha of .01.

Similar analyses conducted on the scores from the individual tests revealed that there were significant effects of number of T1 versions on two of the three tests each in with memory, speed, and spatial visualization ability but that the age by number of T1 versions interaction was not significant in any of the tests.

In order to examine possible interactions with interval, the analyses were repeated with the T1–T2 interval as another factor (coded into five discrete categories) instead of as a covariate. The pattern of results with the number of T1 versions factor was very similar to that reported in Table 2. Importantly, there were also no interactions of longitudinal interval with number of T1 versions or with age and number of T1 versions. At least within the range of T1–T2 intervals examined here, these results provide no evidence that additional experience at the first occasion affects the rate at which change varies as a function of the length of the interval between occasions.

Figure 1 illustrates the longitudinal changes (i.e., T21–T11 differences in composite scores) for participants with one or three T1 versions in each cognitive ability as a function of age decade. Although the figure reveals smaller differences in the composite memory score changes at older ages, the Decade \(\times \) Number of T1 Versions interaction was not significant either for the composite score (Table 2) or for any of the three variables comprising the composite score (i.e., the \(F \) s were all less than 1.1, and the partial \(\eta^2 \) values were each less than .004 for the word recall, paired associates and logical memory variables).

1 Because of the moderately large sample size, an alpha level of .01 was used in all significance tests.
Latent change models (Ferrer & McArdle, 2010) were also conducted with the cognitive ability constructs defined by the three or four (for vocabulary) test scores representing each construct, and age, number of T1 versions, and their interactions as predictors of the level and change constructs. Results of these analyses, in the form of the regression coefficients for each predictor, are presented in Table 3. It can be seen that increased age was associated with significantly more negative change for every ability except rea-
soning. Consistent with the ANOVA results, there were positive effects of the number of T1 versions on the changes in memory, speed, and spatial visualization, but not for the changes in reasoning or vocabulary, and no interactions of age and number of T1 versions on any ability.

Another analysis capitalized on the fact that in 2007 a sample of 227 participants performed the same versions of the tests on the second session of the first occasion and different tests on the third session (Salthouse & Tucker-Drob, 2008). Slightly over half (N = 126) of these individuals returned for a second occasion after an average of 2.3 years, and therefore ANOVAs identical to those reported earlier were conducted with the addition of this third group of participants. The estimated mean changes in the composite scores for each ability in the three groups, adjusted for the covariates, are presented in Table 4. Notice that, with the exception of memory and spatial visualization abilities, a single repetition of the same test version had a greater effect on cognitive change than experience with two different versions of the tests. Importantly, as in the other analyses, none of the interactions of decade with amount or type of test experience on the first occasion was significant with the inclusion of this third group.

A final analysis focused on the relation between test experience and longitudinal change at the level of individual differences by examining the relation between the amount of across-session change on the first occasion (i.e., from T1 to T13) and the magnitude of longitudinal change (i.e., from T1 to T21). Specifically, multiple regression analyses were used to predict the T21–T11 difference from age, the T11–T13 difference, and the interaction of age and the T11–T13 difference. The standardized relations for age ranged from −.08 (for vocabulary) to −.32 (for spatial visualization), and all but that for vocabulary were significantly different from zero. All of the relations of within-occasion change with longitudinal change were significant (with a range of standardized coefficients from .35 to .50), but none of the interactions of age and within-occasion change was significant (with a range of standardized coefficients from −.02 to .06).

Discussion

The current study employed a novel approach to investigate the effects of test experience on longitudinal change. That is, instead of trying to estimate the influence of test experience on change with the use of statistical models, or by comparison with a group of test-naive participants, longitudinal change was examined as a function of different amounts of test experience at the first occasion.

Additional experience with parallel (or identical) versions of cognitive tests on a first occasion affected the magnitude of change on original versions of the test over an interval of approximately 2.5 years for measures of memory, speed, and spatial visualization. Because the across-occasion change was more positive among
individuals exhibiting the largest within-occasion improvement, and there was no evidence of differential loss as a function of longitudinal interval, the effects can be inferred to be attributable to a higher level of performance achieved after additional experience with the tasks on the first occasion. That is, the difference from the first occasion to the second occasion was less negative when the final level of performance at the first occasion was higher. An implication of these results is that longitudinal change does not merely reflect factors operating across the interval between occasions but also, at least indirectly, factors affecting the level of performance on the first occasion.

In all abilities except reasoning in some analyses, between-occasion change was less positive/more negative with increased age. However, none of the interactions of number of T1 versions with age was significant, regardless whether age was a categorical variable in the ANOVAs or a continuous variable in the latent change analyses. Moreover, the failure to find significant interactions is unlikely to be attributable to low power because the analyses had power of at least .77 to detect small effects, the functions in Figure 1 were generally parallel, and there was a consistent pattern in the analyses across measures from individual tests, composite scores, and latent constructs, and at the level of individual differences in the relations between within-occasion (T1) change and between-occasion (T1 to T2) change. The lack of age differences in test experience effects suggests that test experience influences on cognitive change are similar across most of adulthood.

The test experience patterns varied across different cognitive abilities. Little effect of additional first occasion experience was apparent on change in vocabulary, perhaps because of lack of transfer across different vocabulary items, and minimal strategic influences in these tests. There were also small test experience effects with reasoning, which may reflect the difficulty of acquiring strategies in these tests. The large test experience benefits with the relatively unfamiliar spatial visualization tests may reflect the acquisition of appropriate strategies for folding, segmenting, or rotating parts.

As with any project, this study has a number of limitations. One limitation is that most of the participants were healthy adults under 80 years of age at the first occasion. Weaker effects of additional first occasion experience might be evident at older ages or in people with various types of health problems. The average longitudinal intervals were also relatively short, which may have contributed to larger test experience effects than what might be found in studies with longer intervals. The failure to find age differences in test experience effects on the changes in vocabulary and reasoning may have been attributable to the small main effects of test experience on those variables. Finally, effects of T1 experience were only examined on the second (T2) occasion, and it is not known whether effects of additional experience at the initial occasion might also be detectable on later occasions.

To summarize, results from different types of approaches are converging on a conclusion that practice or retest contributions to change in several cognitive abilities appear to be nearly the same magnitude in healthy adults between about 20 and 80 years of age. These findings imply that age comparisons of longitudinal change are not confounded with differences in the influences of retest and maturational components of change and that measures of longitudinal change may be underestimates of the maturational component of change at all ages.

References

This document is copyrighted by the American Psychological Association or one of its allied publishers. This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

New Editors Appointed, 2015–2020

The Publications and Communications Board of the American Psychological Association announces the appointment of 6 new editors for 6-year terms beginning in 2015. As of January 1, 2014, manuscripts should be directed as follows:

- Behavioral Neuroscience (http://www.apa.org/pubs/journals/bne/), Rebecca Burwell, PhD, Brown University
- Journal of Applied Psychology (http://www.apa.org/pubs/journals/apl/), Gilad Chen, PhD, University of Maryland
- JPSP: Interpersonal Relations and Group Processes (http://www.apa.org/pubs/journals/psp/), Kerry Kawakami, PhD, York University, Toronto, Ontario, Canada
- Psychological Bulletin (http://www.apa.org/pubs/journals/bul/), Dolores Albarracín, PhD, University of Pennsylvania
- Psychology of Addictive Behaviors (http://www.apa.org/pubs/journals/adb/), Nancy M. Petry, PhD, University of Connecticut School of Medicine

Electronic manuscript submission: As of January 1, 2014, manuscripts should be submitted electronically to the new editors via the journal’s Manuscript Submission Portal (see the website listed above with each journal title).

Current editors Mark Blumberg, PhD, Steve Kozlowski, PhD, Arthur Graesser, PhD, Jeffry Simpson, PhD, Stephen Hinshaw, PhD, and Stephen Maisto, PhD, will receive and consider new manuscripts through December 31, 2013.