Presidential Vote Buying in Congress

Jeffery A. Jenkins
Woodrow Wilson Department of Politics
University of Virginia
jajenkins@virginia.edu

and

Timothy P. Nokken
Department of Political Science
Texas Tech University
timothy.nokken@ttu.edu

October 21, 2008

Abstract:

We add to the literature on vote buying in legislatures by investigating whether the president was able to buy votes in lame-duck sessions of Congress during the pre-Twentieth Amendment era. We focus on lame-duck sessions because they provide the ideal context for presidential vote buying: a portion of the membership was exiting the chamber (having retired or lost their reelection bids) and thus in need of new employment, which the president could provide via executive appointments. Incorporating a variety of House-related data from the 45th through 72nd Congresses (1877-1933), we conduct several tests and uncover two sets of results. First, we find that a partial lame-duck market for votes operated in lame-duck sessions, with retirees and reelection losers of the other party (the party other than the president’s) displaying significantly more loyalty to the president’s policy agenda than would be expected based on previous ideologies/preferences. Second, we find that both cost and loyalty factored into presidents’ allocation of executive appointments, regardless of lame-duck members’ party affiliations. Moreover, at the extremes, presidents appear to have relied on loyalty considerably more than cost as a guide in dispensing appointments.

We thank Keith Krehbiel, Nolan McCarty, and Jason Roberts for comments on an earlier draft, and Alan Wiseman for several helpful conversations on the subject of vote buying in Congress.
Introduction

Formal theories of vote buying in legislatures have gained prominence in recent years (see, e.g., Snyder 1991; Groseclose 1996; Snyder and Groseclose 1996). Such theories seek to predict, among other things, which members of a legislature are most susceptible to entreaties from outside agents, that is, which members are most likely to trade their votes for “favors” of some kind. While the logic of these vote-buying theories is intuitively appealing, and has been incorporated into other theories of legislative decision making (Krehbiel 1998), explicit tests of the theories have been quite limited, focusing on one or a handful of roll-call votes in one or two legislative sessions (Groseclose 1996; Wiseman 2004; Herron and Wiseman 2008). Moreover, the favors (or “bribes”) extended by the outside agent(s), which form the foundation of the vote-buying arrangement, are never examined systematically.

Part of the difficulty in conducting a comprehensive empirical analysis of vote buying is that the explicit parts of the vote trade are rarely observed. Specifically, the currency (or form of favor) provided by the outside agent to legislators for their vote(s) is not precisely defined or determined. Instead, evidence of legislators’ vote shifts is typically sought, with only anecdotal references to favors – such as committee assignments, campaign contributions, or policy side-payments – discussed. The case of Rep. Marjorie Maroglies-Mezivinsky (D-PA), who traded her vote on the White House budget package in the 103rd Congress in exchange for a promise by President Clinton to support an entitlement-cutting conference, is the favorite “complete” anecdotal account of vote buying presented in the literature (see Wiseman 2004).

1 These theories harken back to earlier works in the public-choice tradition, like Buchanan and Lee (1986) and Denzau and Munger (1986).
2 Snyder (1991) refers to these outside agents as “lobbyists,” which could include (but are not limited to) interest groups, party leaders, or the president. In addition, Snyder refers to favors as “bribes.”
3 In addition, Herron and Wiseman (2008) do not examine vote buying on particular votes per se, but rather compare predicted NOMINATE scores across two years of the Illinois General Assembly, before and after a redistricting. They report results that are consistent with vote-buying theory (specifically, Snyder’s initial theory).
In this paper, we conduct a comprehensive examination of vote buying across an extended period of U.S. Congressional history. We focus on the 1877-1933 period (45th through 72nd Congresses), as it provides an ideal context for a study of vote buying. Specifically, the Twentieth Amendment was adopted in 1933 in large part to eliminate the lame-duck session of Congress – the “short” session that convened after the elections to the next Congress had taken place – because it was widely held that many exiting members (or “lame ducks”), no longer tied to their constituencies via an electoral connection, were selling their votes to the president in exchange for executive appointments. Thus, by looking at the pre-Twentieth Amendment era in Congress, we acquire a complete view of the component parts of a vote-buying story: a vote buyer (the president), targets of vote-buying pressure (lame ducks), a currency to buy votes (promises of executive appointments), and a means to assess vote/favor trading (member votes on executive-request roll calls in lame-duck sessions and subsequent executive appointments).

In performing our analysis, we incorporate prior vote-buying theories, especially that of Snyder (1991), and extend the logic beyond the “normal” legislative context (wherein no electoral agency problem exists and all members are beholden to their constituents, which all vote-buying theories assume) and into the more electorally-heterogeneous legislative environment of lame-duck sessions (wherein different member types, returning and exiting, exist).

The paper proceeds as follows. We first set up the analysis theoretically, discussing the history of lame-duck sessions and arguments for their elimination before addressing how the pre-Twentieth Amendment era serves as a suitable venue for a vote-buying analysis. We then set up the analysis empirically, laying out quasi-experimental designs to investigate if lame-duck markets for votes existed and whether presidents allocated executive appointments in ways consistent with vote-buying theories, conduct tests, and report results. We then conclude.
Theoretical Setup

Our starting point for a vote-buying analysis begins with a quick history of the fight to eliminate lame-duck sessions of Congress, culminating in the passage of the Twentieth Amendment (or “Lame Duck Amendment”) in 1933.\(^\text{4}\) Due to various accidents of history, the institutional design of Congress from the Nation’s Constitutional inception was structured around two legislative sessions, one long and one short, both of which convened in December (in odd and even years, respectively). More importantly, the short session convened after the elections to the next Congress, which meant that it was populated in part by a set of members – retirees and reelection losers – who would be exiting the chamber in short order. These soon-to-be exiting members, no longer tied electorally to their constituents, became known as “lame ducks,” and the short session was increasingly referred to as the “lame-duck session.”

Quite early on, political observers became aware of the potential agency problem in representation (or moral hazard problem) inherent in lame-duck sessions. Exiting members, while no longer electorally accountable to their geographic units, could still participate in congressional proceedings and, more importantly, vote on policy matters. Thus, lame ducks, possessing a different incentive structure, might pursue interests that ran counter to those of their constituents. This “agency loss” might include lame ducks “shirking” toward their own ideological beliefs or, more problematically, engaging in overt corruption by selling their votes to other actors in the political environment.

Several attempts were made to eliminate the lame-duck session during the nineteenth century, but none gained much support. In short, members of Congress could not be persuaded that the current institutional design was working poorly or that policy outputs were adversely

\(^\text{4}\) For a more in-depth history of the battle to abolish lame-duck sessions, see Jenkins and Nokken (2008).
affected. And, despite the best efforts of the progressive press, arguments for a constitutional amendment to abolish lame-duck sessions did not resonate with the citizenry.

In the early 1920s, however, a new hope emerged. Amid new press charges of lame-duck corruption – centering on a ship-subsidy bill in the House, in which President Harding was alleged to have bought the votes of a number of lame ducks (Goodman and Nokken 2004) – Sen. George W. Norris (R-NE) took up the cause and worked tirelessly for the elimination of the lame-duck session. After a decade of effort, Norris succeeded in securing a two-thirds vote in both chambers of Congress for a constitutional-amendment proposal. Soon thereafter, the proposal was ratified by three-quarters of the states and the Twentieth Amendment was adopted. The regularly-occurring lame-duck session was no more, replaced by two regular sessions, both of which convened before the elections to the next Congress.

Norris’s strategy for eliminating the lame-duck session was to focus specifically on the source of agency loss, arguing that a corrupt log-roll had developed between lame ducks and the president. According to Norris (1945: 332), “many … lame-duck members of Congress were willing to follow the command of the executive and to adopt legislation that he desired. For their subservience, they were given fat executive appointments.” Thus, the president could take advantage of lame ducks’ need for new employment by promising them well-paying jobs within his purview (the executive branch) in exchange for their support on legislative measures that he cared about. By the 1920s, this quid-pro-quo relationship had, in Norris’s words, “become quite common” (332).

5 Norris made such statements often throughout the 1920s. See Norris (1925a; 1925b) and Zucker (1966: 38).
6 This argument was made routinely in the progressive press of the time. For example, an editorial in The Independent contended that “[a lame duck’s] major interest is quite naturally in the trend of his own fortunes following the close of the short session of which he has unwillingly attended. Thus does patronage fatten upon the lame duck. Administration pressure is not easy to withstand, particularly when there is a promise of remunerative employment held before the eyes of the repudiated Congressman” (Dec. 27, 1924, 561).
How Norris’s decade-long crusade succeeded is beyond the scope of this paper. Rather, we focus on the basis of Norris’s argument, as the alleged log-rolling scenario he and the progressive press describe provides the ideal case for a vote-buying analysis. First, a clear set of vote sellers existed in lame-duck members. Their days in Congress were numbered, and they faced uncertain career prospects. Financially attractive outside opportunities for ex-members of Congress were limited during this era; while interest groups had begun to form and lobby Congress by the late-nineteenth century, it was not until the mid-twentieth century that the modern interest-group system had begun in earnest (Thompson 1985; Wright 2002). Lame ducks were thus in need of new employment. Second, a clear vote buyer existed in the president. He possessed a distinct policy agenda and could benefit from the votes of the lame ducks. In addition, he possessed something the potential vote sellers desired: jobs. The president controlled a prime patronage lever in the federal bureaucracy, which could be used to provide lame ducks with lucrative executive appointments. Many of these federal positions in fact paid as much or more than members’ congressional salaries.\(^7\)

Tracking the actual “favor trading” between the president and lame-duck members is also possible. The president’s policy goals were communicated routinely to Congress in written requests, which were documented in both the *Congressional Record* and Richardson’s (1904) *A Compilation of Messages and Papers of the Presidents* and can be connected directly to roll-call votes. Gauging support for the president’s positions in lame-duck sessions is thus straightforward. Connecting potential presidential support with subsequent executive rewards can be accomplished by examining members’ post-elective careers. The biographical records of members of Congress are quite thorough and can be examined for political developments, like

\(^7\) Positions on federal commissions or boards (like the Monetary Commission and the Tariff Board) routinely paid between $7,500 and $10,000 annually in the early twentieth century. Members of Congress did not earn annual salaries of $10,000 until 1925; before then, they earned $5,000 (1874-1907) or $7,500 (1907-1925) annually.
receipt of any executive appointments, upon their exit from Congress. Determining which lame ducks received executive appointments, then, is also quite straightforward.

In sum, all the ingredients for a complete vote-buying analysis exist in the pre-Twentieth Amendment era lame-duck sessions: a vote buyer, a set of potential vote sellers, a currency to buy votes, and a means to assess vote/favor trading. As for theoretical expectations, the model developed by Snyder (1991) is useful, as it posits a single vote buyer. The general prediction is that the vote buyer (here, the president) will focus his attention on buying “cheap” legislators, those near the median of the chamber, since they are pivotal for achieving a winning outcome. The one limitation in applying Snyder’s model to the pre-Twentieth Amendment case is that legislators’ preferences are assumed to be constituency-induced, and thus that all legislators are of the same type (constrained by the reelection incentive). The pre-Twentieth Amendment scenario adds a wrinkle to the logic of Snyder’s model, as vote buying “cost” now has two determinants – spatial location and electoral type (lame ducks are theoretically cheaper than reelected members, all else equal). Moreover, in choosing among lame ducks, the president may use loyalty to his policy agenda as an added factor in his appointment calculus. Thus, for a vote-buying president in lame-duck sessions, identifying legislators to target might involve selecting based on proximity to the chamber median, loyalty to his policy goals, or both.

Empirical Setup and Results

In looking for evidence of vote buying consistent with a president/lame-duck log-rolling story, we investigate two related questions. First, is there evidence that a “market for votes,” organized by lame ducks, operated in lame-duck sessions? More specifically, is there evidence that lame ducks were more supportive of the president’s policy positions than returning (reelected) members in lame-duck sessions, conditional on former voting/ideological tendencies?
The popular conception was that competition emerged in lame-duck sessions, as lame ducks vied for executive appointments by voting for the president’s legislative requests (and thus signaling their willingness to support the president’s agenda). As Norris (1925b: 584) contended, lame ducks “earn [the president’s] favor by carrying out his commands in legislative matters.”

Second, was support of the president’s policy positions, conditional on former voting/ideological tendencies, a significant factor in the distribution of executive appointments to lame ducks? This was the heart of the popularly-maintained exchange relationship: if lame ducks acquiesced and did the president’s bidding, rewards would follow. As Norris (1925a: 214) argued: “the whole country expects that these men will be taken care of.”

To investigate these questions, we examine over a half-century’s worth of House data, spanning the 45th through 72nd Congresses (1877-1933). We begin with the 45th Congress (1877-79), as it corresponds to the end of Reconstruction and reflects (in the minds of many scholars) the return to “normal politics” in the United States.\(^8\) We end with the 72nd Congress (1931-33), as it corresponds to the last regularly-occurring lame-duck session of the pre-Twentieth Amendment era. Overall, this period, which represents the post-Reconstruction, pre-New Deal era in U.S. history, was stable politically (as a durable two-party system was in operation) and should provide a suitable laboratory for our quasi-experimental analyses.

A Lame-Duck Market for Votes

To assess whether lame ducks were actively signaling their willingness to support the president’s positions in lame-duck sessions, we first need to identify a measure that will capture such potential signaling. To reiterate, the argument for a lame-duck market for votes is predicated on lame ducks supporting the president’s positions, conditional on prior

\(^8\) Cox and McCubbins (2005), for example, begin their “modern” analysis of roll rates with the 45th Congress.
voting/ideological tendencies, at higher rates than their party brethren who won reelection. This then requires a measure that will capture the difference between how members *actually voted* and how they were *predicted to have voted*, based on their underlying preferences/ideologies.

We create such a measure by first identifying the set of House roll calls connected to executive requests in lame-duck sessions between the 45th and 72nd Congresses. Based on the request/roll-call mapping conducted by Swift et al. (2000) – which uses the *Congressional Record* and Richardson (1904) as executive-request sources – there were 80 such roll calls, ranging from zero in the 45th (1877-79), 52nd (1891-93) and 72nd (1931-33) Congresses to eight in the 47th (1881-83) and 57th (1901-03).9 (All roll calls were normalized so that a “1” represents a vote for the president’s position and a “0” against, with abstentions treated as missing data.) On each of these roll calls, we then create a “predicted vote” for each House member by estimating a logit, using members’ first and second dimension W-NOMINATE scores from the *regular session* of the given Congress as covariates.10 This allows us to determine how members *should have voted*, based on their underlying preferences. More specifically, the regular-session W-NOMINATE scores reflect members’ preferences before the congressional elections that led to the lame-duck session. Thus, these scores should not be tainted by any agency problems, and should reflect members’ established policy positions.11

9 A more complete run-down is as follows (Congress no. in top row, no. of request roll calls in bottom row):

<table>
<thead>
<tr>
<th>Congress</th>
<th>Roll Calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>45-46</td>
<td>0-2</td>
</tr>
<tr>
<td>47</td>
<td>2</td>
</tr>
<tr>
<td>48-49</td>
<td>8-4</td>
</tr>
<tr>
<td>50-51</td>
<td>3-2</td>
</tr>
<tr>
<td>52-53</td>
<td>6-0</td>
</tr>
<tr>
<td>54-55</td>
<td>7-4</td>
</tr>
<tr>
<td>56-57</td>
<td>3-1</td>
</tr>
<tr>
<td>58</td>
<td>8-2</td>
</tr>
<tr>
<td>59-60</td>
<td>4</td>
</tr>
<tr>
<td>61-62</td>
<td>2</td>
</tr>
<tr>
<td>63-64</td>
<td>1</td>
</tr>
<tr>
<td>65-66</td>
<td>1</td>
</tr>
<tr>
<td>67-68</td>
<td>1</td>
</tr>
<tr>
<td>69-70</td>
<td>4</td>
</tr>
<tr>
<td>71-72</td>
<td>3</td>
</tr>
<tr>
<td>73</td>
<td>0</td>
</tr>
</tbody>
</table>

10 For an overview of the W-NOMINATE estimation procedure, see Poole (2005) and Poole and Rosenthal (2007).

11 Moreover, this specification captures the problem as described by Norris (1925a: 214): “the country … sees these men at the demand of the President, voting contrary to the positions they have theretofore taken” (emphasis added).
Possessing sets of actual and predicted votes on each of the 80 executive-request roll calls, we create actual and predicted presidential support scores for individual House members by Congress. Actual support scores reflect the proportion of times a member voted in accordance with the president’s requests, while predicted support scores reflect the proportion of times a member is predicted to have voted in accordance with the president’s requests. Both sets of scores range from 0 to 1, with 0 representing perfect opposition to the president and 1 representing perfect support of the president. Given the distribution of executive-request roll calls across Congresses (see footnote 9), some support scores will be relatively fine-grained while others will be quite course.

Our dependent variable is the difference between actual and predicted presidential support scores – i.e., actual support score minus predicted support score – for individual members by Congress. As specified, this variable avoids any potential agenda problems, as its two underlying components (actual and predicted support scores) are based on the same set of votes. If we had instead used the difference between members’ actual support scores in lame-duck sessions and their actual support scores in regular sessions, we would be unable to determine whether observed deviations were caused by preference changes or agenda changes. Since the agenda is held constant in our dependent variable, any observed deviations can be attributed to changes in induced preferences (caused, for example, by lame-duck status).

Operationally, our dependent variable is theoretically continuous within the [-1, 1] interval, with positive (negative) values representing greater (lesser) presidential support than predicted.

12 Both scores represent adjusted scores, as they are calculated on only those executive-request roll calls in which members participated. Thus, the denominators will vary by member. This contrasts with unadjusted scores, which would treat an abstention as a vote against the president (in which case the denominator would be the same for all members in a given Congress).

13 Our dependent variable mirrors that of Cox and Poole (2002); they compare members’ actual Rice cohesion scores to their predicted Rice cohesion scores (estimated using W-NOMINATE scores).
Our independent variables mostly distinguish between different member types, based on electoral status. Lame-duck status is specified in six dummy variables (whether the member lost reelection to the House, retired, or lost election to a higher office, broken down by president’s-party or other-party affiliation). Additional dummy variables indicate whether the member won election to a higher office (broken down by party) or was affiliated with the other party (which captures other-party members who were reelected).\(^{14}\) Two seniority variables (linear and squared terms) – where seniority is measured as terms of House service – are incorporated as controls. Finally, we include a variable – the absolute distance between members’ regular-session first-dimension W-NOMINATE scores and the regular-session chamber median by Congress – to capture members’ ideological locations as they entered the lame-duck session.

If a distinct lame-duck market operated in lame-duck sessions, we should observe that lame ducks were significantly more supportive of the president’s positions than reelected members of their respective parties. Stated differently, the coefficients on the lame-duck variables should be positive and statistically significant. This would be consistent with lame ducks “reaching out” to the president, by offering greater support than they might have shown in the past, as part of a market competition for executive appointments. In addition, the distance-to-median variable can be used to determine if pivotal members – those closer to the chamber median – leveraged their pivotal status by communicating their willingness to go along with the president’s policy agenda (as a first step in potential quid-pro-quo arrangement). If so, the coefficient on the distance-to-median variable should be negative and statistically significant.

Results from a set of ordinary least squares (OLS) regressions on all House members who (a) served between the 45th and 72nd Congresses (1877-1933) and (b) voted on executive-request roll calls in lame-duck sessions are presented in Table 1. Columns 1 and 2 present

\(^{14}\) Thus, the un-modeled baseline case is: member of the president’s party reelected to the House.
results from estimations with and without Congress-specific fixed effects, and without the
distance-to-median variable included. We find evidence to suggest that a partial lame-duck
market existed in lame-duck sessions. Specifically, lame ducks of the other party (the party not
of the president) were more supportive of the president’s positions than were reelected other-
party members, as indicated by the positive, significant coefficients on the lost and retired other-
party variables. This result holds with or without the inclusion of Congress-specific fixed
effects. Substantively, a move from reelected to lame-duck other-party status results in a one-
seventh to nearly one-quarter of a standard-deviation increase in our dependent variable.15 Lame
ducks of the president’s party, on the other hand, were no more or less supportive of the
president’s positions than were reelected president’s-party members.

[Table 1 about here]

Columns 3 and 4 present results from estimations with and without Congress-specific
fixed effects, but with the distance-to-median variable included. We find that ideological
proximity is a useful predictor: members closer to the chamber median were more supportive of
the president’s positions than expected, as indicated by the negative, significant coefficient.
Substantively, a one standard deviation move toward the chamber median results in a one-fifth
of a standard deviation increase in our dependent variable. And, again, we find evidence of a
partial lame-duck market, with results similar to those of the Columns 1 and 2 estimations.

Thus, an analysis of voting on executive-request roll calls suggests that some interesting
dynamics were present in lame-duck sessions. Reelection losers and retirees of the other party
(the party not of the president) were more supportive of the president’s agenda than expected,
suggesting they were currying favor in hopes of receiving future benefits (executive
appointments). Pivotal members, those near the chamber median based on regular-session first-

15 These results are estimated using the lost and retired (other party) coefficients from model 1.
dimension W-NOMINATE scores, were also more supportive of the president’s agenda than expected, indicating perhaps their willingness to trade on their pivotal status.

Executive Appointments

To assess whether support of the president’s lame-duck agenda (conditional on former voting/ideological tendencies) was a significant factor in the allocation of executive appointments, we first must establish which House members received executive appointments across our period of interest (45th through 72nd Congresses). Using several related sources – both the on-line and in-print Biographical Directory of the United States Congress and ICPSR and McKibbin (1997) – we identified the set of members who received executive appointments upon their exit from the House. We found that 85% of all executive appointments were made after the inter-session congressional elections and went to lame ducks. The other 15% were allocated before the elections, and many of these only a few months prior to the elections; thus, it is likely that many of the recipients were planning to retire (and thus not run for reelection). After a thorough canvassing, we found only one case of a reelected House member receiving an executive appointment (Warren B. Hooker, R-NY, in the 55th Congress). It thus seems clear that executive appointments were targeted for exiting (lame-duck) members.

Based on these data and the historical contentions of the time – that executive appointments were rewards given to lame ducks who did the president’s bidding – we focus our executive-request analysis exclusively on the set of lame-duck House members who served between the 45th and 72nd Congresses (1877-1933). More generally, there were 1,905 lame ducks who served in these Congresses and participated on executive-request roll calls, and 157
of them (or 8.24%) received an executive appointment.16 This set of appointment-eligible lame
ducks, broken down by appointment “success,” constitutes our dependent variable.

The two key independent variables are: (1) lame ducks’ actual–predicted presidential
support scores and (2) the absolute distance between lame ducks’ regular-session first-dimension
W-NOMINATE scores and the regular-session chamber median by Congress.17 These variables
capture the two important avenues open to a vote-buying president. First, greater-than-predicted
loyalty can serve as the first step in the quid pro quo of a congressional-presidential vote trade.
That is, in choosing potential executive-appointment recipients, the president might use greater-
than-predicted loyalty to his agenda (as embodied in executive-request roll calls) in lame-duck
sessions as a litmus test. If so, we would expect the coefficient on the actual–predicted
presidential support variable to be positive and statistically significant. Second, the relative cost
of votes might be a significant factor. That is, the president might target lame ducks whose votes
are “cheapest” to buy: those near the House median (the majoritarian pivot).18 This is consistent
with the standard vote-buying theory in the literature (Snyder 1991), except we allow for vote
buying on \textit{either} side of the median (not just the side closest to the president).19 As a president’s
goal is to secure a \textit{majority} on a given vote, we posit that in addition to buying lame-duck votes

16 Of these 157, fifty (or 31.8\%) were other-party members and 107 (or 68.2\%) were president’s-party members.
17 The correlation between these two variables is -0.252.
18 One question to consider here is: if we are looking only at lame ducks, does cost still differ based on underlying
ideology (i.e., distance to the chamber median)? That is, if ideology is assumed to be constituency-induced, and the
electoral connection no longer holds, are all lame ducks the same price? Our view is that ideology has a personal
component as well as a constituency-induced component, and that members are typically drawn from the median of
their constituencies; on this electoral “matching,” see, e.g., Aldrich et al. (2002) and Cooper and Brady (1981).
Thus, the distance-to-median hypothesis still holds, as lame ducks most open to vote buying will be those who are
cheapest \textit{personally} (i.e., those who have less to give up in a personal-ideological sense).
19 Snyder’s theory assumes that a vote buyer will target “marginal” legislators – those who are nearly indifferent
between the status quo (SQ) and the alternative (A) under consideration. Considering an example with a vote buyer,
A, and the cut point between SQ and A on the right side (i.e., right of the chamber median) of a one-dimensional
issue space, Snyder’s theory posits that the vote buyer will buy the votes of those legislators \textit{between} the chamber
median and the cut point. Moreover, the magnitude (or likelihood, considered more generally) of the bribe is
decreasing in rightward distance from the chamber median. Snyder’s model predicts that a vote buyer will \textit{not} buy
legislators to the right of the cut point (as they will vote for A based on their preferences alone, and thus are “free”)
or to the left of the median (as they face high electoral/constituency costs, and thus are too expensive).
on his side of the median, he may “cross the median” to buy additional lame-duck votes rather than attempt to buy the votes of some returning members (with some other currency) on his side of the median.20 If so, the coefficient on the distance-to-median variable should be negative and statistically significant. (We will examine the validity of this two-sided vote-buying conjecture shortly.) Finally, we also include dummy variables to account for particular lame-duck status (reelection losers of the president’s party, and reelection losers and retirees of the other party),21 and two continuous variables to tap seniority (linear and quadratic terms).

Results from a set of logit regressions (1 = lame duck received an appointment, 0 = otherwise) appear in Table 2. Columns 1 and 2 present results from estimations with and without Congress-specific fixed effects. The key finding is that presidents appear to have based their appointment decisions on \textit{both} loyalty and cost (which holds across both estimations). That is, greater-than-predicted loyalty increases the likelihood of a lame duck receiving an executive appointment (captured by the positive, significant coefficient on the actual–predicted presidential support variable), as does relative “cheapness” or proximity to the chamber median (captured by the negative, significant coefficient on the distance-to-median variable). Also interesting is that reelection losers of the president’s party were more likely to have received an executive appointment than retirees of the president’s party, all else equal.

20 More formally, if the president is faced with needing to buy \(x\) votes to achieve a majority – where \(x\) is equal to the number of voters that lie in the “marginal zone” between the median and cut point – he may decide to buy some \(y < x\) portion from among those lame ducks on the \textit{other} side of the median, rather than pursue the votes of returning (reelected) members who lie in the marginal zone (the latter, as our data indicate, would require some form of bribe other than executive appointments, which the president may or may not possess). Stated differently, if \(x\) is made up of \(y\) regular members and \(z\) lame-duck members, the president may decide to forego buying the votes of the \(y\) regular members and instead turn to \(y\) lame-duck members on the \textit{other} side of the median. If so, the \textit{cheapest} lame ducks on the other side of the median will be those \textit{closest} to the median. (Note that a heterogeneity of legislator types can be accommodated within Snyder’s basic homogenous-type model, by varying the “alpha” term for lame ducks and reelected members, respectively. As they are no longer tied to their constituents via an electoral connection, lame ducks will have a smaller alpha term relative to reelected members. See Snyder (1991, p. 96 and fn 4) for details.)

21 The un-modeled baseline case is: retirees of the president’s party. Note that we initially specified the model with four additional variables (for those lame ducks who sought and won/lost higher office, by party), but they were dropped because of collinearity.
Before considering subsets of the model, we return to the two-sided vote-buying conjecture raised earlier. Is such a conjecture tenable? We investigate this by breaking our distance-to-median variable into two separate variables: (a) absolute distance to the median on the president's side of the W-NOMINATE issue space and (b) absolute distance to the median on the other side of the W-NOMINATE issue space.22 Each variable takes on a zero value for members who fall into the opposite category (for example, a lame duck with a left-of-median NOMINATE score during a right-of-median presidency is coded as a zero for the distance-to-median-on-president’s-side variable). We then re-estimate the initial (Column 1) logit regression with the two one-sided distance variables replacing the single two-sided distance variable. For brevity, full results are not reported; however, the coefficients on the two one-sided variables are both negative (consistent with our vote-buying logic), with the distance-to-median-on-other-side variable larger in absolute terms. More importantly, a post-estimation test indicates that the two coefficients are not significantly different from one another ($\chi^2 = 1.26, p < 0.26$). Pooling the two variables is thus reasonable, and our two-sided vote buying conjecture is tenable.

[Table 2 about here]

We then break the overall model (Column 1) into separate models by president’s party (Column 3) and other party (Column 4). Similar results are uncovered across the two estimations. The key finding is that presidents used both loyalty and cost in distributing executive appointments, regardless of members’ party affiliations.23 In effect, presidents were rational – they did not play favorites – and applied the same rules (how differentially loyal had

22 The right side of the W-NOMINATE issue space is considered the president’s side in the 45th-48th, 51st-52nd, 55th-62nd, and 67th-72nd Congresses (corresponding to the presidencies of Hayes, Garfield, Arthur, Harrison, McKinley, T. Roosevelt, Taft, Harding, Coolidge, and Hoover), while the left side is considered the president’s side in the 49th-50th, 53rd-54th, and 63rd-66th (corresponding to the presidencies of Cleveland and Wilson).

23 In earlier work on “shirking” in lame-duck sessions, Jenkins and Nokken (2008) found positive but statistically insignificant evidence that presidents used loyalty as a criterion when allocating executive appointments. In that analysis, the authors used a blunt measure of presidential support – a score based on all executive-request roll calls in a Congress, not just those from the lame-duck session – which introduced considerable measurement error.
the member been?; how cheap was the member?) when considering lame ducks of their or the
other party. Once again, though, we find that reelection losers of the president’s party possessed
an advantage over retirees of the president’s party in receiving executive appointments, all else
equal. This advantage did not translate to the other party, however, as presidents treated
reelection losers and retirees similarly (again, all else equal). This behavior by the president –
taking care of reelection losers of his party – is consistent with him playing the role of partisan
“protector.” That is, it is commonly held that presidents used their patronage in the late-
nineteenth and early-twentieth centuries to further party interests. Often this meant providing an
“insurance mechanism” – i.e., jobs in the executive branch – to faithful partisans who lost their
reelection bids (see, e.g., Brady, Buckley, and Rivers 1999). These results thus suggest that
presidents, in distributing executive appointments, were guided not only by their own (personal)
interests but also the interests of their party more generally.

How substantively important are these statistically significant findings? We investigate
this by looking at predicted probabilities. Specifically, we examine how the probability of
receiving an executive appointment changes, relative to a general baseline probability, as key
variables change. Such probability changes appear in Table 3, based on models 1 (all lame
ducks), 3 (the president’s party only), and 4 (the other party only) from Table 2. A baseline
probability of appointment is presented for each model (by setting all continuous variables at
their mean values and all dummy variables at zero), with changes from that baseline provided in
the relevant cells. We find that a one standard deviation increase in the actual–predicted

24 Reelection losers were thus viewed as more “needy,” since they had been planning to stay in Congress. This
contrasts with retirees, who presumably had their next career stage mapped out in advance of the lame-duck session
(or, at a minimum, mapped out better than members who would subsequently lose their reelection bids). Thus, one
might imagine the president using “losing status” as an affirmative action policy (or tiebreaker): when considering
two lame ducks of his party, similar in both loyalty and cost except one is a reelection loser while the other is a
retiree, the president might provide the reelection loser with an appointment and thus serve the interests of his party.
presidential support variable and a one standard deviation decrease in the distance-to-median variable yield similar appointment-probability increases. Comparable changes in loyalty to the president’s agenda and cost of purchase – becoming more loyal than predicted versus becoming cheaper to purchase – thus had similar effects on the likelihood of receiving an appointment. A divergence occurs, however, when we compare *extreme* changes in each variable, that is, moving to the maximum value of the actual–predicted presidential support variable (a value of one, or perfect loyalty to the president’s agenda when perfect disloyalty is predicted) versus the minimum value of the distance-to-median variable (a value of zero, exactly at the chamber median). Here we find that the added benefit (the addition to appointment probability) from maximum loyalty is between two (other party model) and four-and-a-half (president’s party model) times larger than perfect cost effectiveness. Thus, extreme loyalty trumped extreme cost effectiveness in the mind and behavior of the president. Lame ducks thus received a big “kick” – in terms of raising their likelihood of receiving an appointment – from exhibiting perfect loyalty to the president’s agenda when just the opposite was expected.25

[Table 3 about here]

Conclusion

Theories of vote buying in legislatures have produced an interesting set of predictions regarding, among other things, which legislators are targeted for vote-buying pressure. Empirical tests of vote buying, however, have lagged behind the literature’s theoretical contributions. This is due, in part, to the difficulties of identifying all aspects of a vote-buying arrangement. We argue that the politics of lame-duck congressional sessions in the pre-

25 Also interesting is that seniority appears to have been a major factor in presidents’ allocation of appointments to members of the *other* party. Why this was this case is unclear. One could speculate – was it done out of respect for partisan opponents with long House tenures who found themselves exiting the chamber (perhaps unexpectedly)? – but that would be ad hoc. Nonetheless, this finding is curious and deserves further investigation.
Twentieth Amendment era offer an ideal venue to search for systematic evidence of vote buying. First, claims of vote buying in Congress were made often and used by reformers like Sen. George Norris to eventually eliminate the lame-duck session. Second, and more importantly from a social-scientific perspective, all the ingredients for a complete vote-buying analysis exist in this period: a vote buyer (the president), a set of potential vote sellers (lame ducks), a currency to buy votes (executive appointments), and a means to assess vote/favor trading (member votes on executive-request roll calls in lame-duck sessions and subsequent executive appointments).

Our analyses yield two sets of results. First, we uncover evidence that a partial lame-duck market for votes operated in lame-duck sessions, with retirees and reelection losers of the other party displaying significantly more loyalty to the president’s policy agenda than expected (based on previous ideologies/preferences). Second, we uncover evidence that both cost and loyalty factored into presidents’ decision making when allocating executive appointments. That vote buyers rely upon cost – or the “cheapness” of votes – when selecting potential vote-buying targets is a typical prediction in the theoretical vote-buying literature (Snyder 1991), and our evidence thus confirms this. Our finding that presidents used loyalty (specifically, greater loyalty than expected, based on members’ prior ideologies/preferences) to their policy agenda as a criterion for dispensing appointments is especially interesting and new. At the extremes, we find that presidents used loyalty considerably more than cost as a guide in allocating appointments.

In future work, we envision exploring in two directions. First, we will extend our post-Reconstruction, pre-New Deal analyses to the Senate. To a potential vote buyer, the Senate – as a smaller chamber – meant fewer members to buy. Thus, it would seem to be fertile ground for presidents’ vote-buying attention. Second, we will attempt to move beyond our dichotomous
appointment coding and order executive appointments in some fashion, whether by perceived importance/authority of said executive positions or perhaps by annual salary (should that information be readily available for all positions). Such an ordering would allow us to test a Snyder-type vote buying model more directly, as the value of bribes should increase with proximity to the chamber median.
References

Table 1: Estimating Actual–Predicted Presidential Support on Executive-Request Roll Calls

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lost Reelection</td>
<td>-0.0096</td>
<td>0.0267</td>
<td>-0.0199</td>
<td>0.0111</td>
</tr>
<tr>
<td>(President’s Party)</td>
<td>(0.0128)</td>
<td>(0.0146)</td>
<td>(0.0127)</td>
<td>(0.0142)</td>
</tr>
<tr>
<td>Retired</td>
<td>-0.0078</td>
<td>0.0185</td>
<td>0.0037</td>
<td>0.0170</td>
</tr>
<tr>
<td>(President’s Party)</td>
<td>(0.01359)</td>
<td>(0.0154)</td>
<td>(0.0138)</td>
<td>(0.0150)</td>
</tr>
<tr>
<td>Lost Higher Office</td>
<td>0.0165</td>
<td>0.0112</td>
<td>-0.0019</td>
<td>-0.0031</td>
</tr>
<tr>
<td>(President’s Party)</td>
<td>(0.0528)</td>
<td>(0.0544)</td>
<td>(0.0597)</td>
<td>(0.0593)</td>
</tr>
<tr>
<td>Won Higher Office</td>
<td>-0.0270</td>
<td>-0.0118</td>
<td>-0.0189</td>
<td>-0.0072</td>
</tr>
<tr>
<td>(President’s Party)</td>
<td>(0.0642)</td>
<td>(0.0637)</td>
<td>(0.0653)</td>
<td>(0.0645)</td>
</tr>
<tr>
<td>Lost Reelection</td>
<td>0.0953***</td>
<td>0.0719**</td>
<td>0.0683**</td>
<td>0.0489**</td>
</tr>
<tr>
<td>(Other Party)</td>
<td>(0.0256)</td>
<td>(0.0236)</td>
<td>(0.0248)</td>
<td>(0.0232)</td>
</tr>
<tr>
<td>Retired</td>
<td>0.0685*</td>
<td>0.0751**</td>
<td>0.0568*</td>
<td>0.0653*</td>
</tr>
<tr>
<td>(Other Party)</td>
<td>(0.0290)</td>
<td>(0.0272)</td>
<td>(0.0279)</td>
<td>(0.0266)</td>
</tr>
<tr>
<td>Lost Higher Office</td>
<td>0.1418</td>
<td>0.0999</td>
<td>0.1426</td>
<td>0.0970</td>
</tr>
<tr>
<td>(Other Party)</td>
<td>(0.0835)</td>
<td>(0.0744)</td>
<td>(0.0810)</td>
<td>(0.0734)</td>
</tr>
<tr>
<td>Won Higher Office</td>
<td>-0.0002</td>
<td>0.0084</td>
<td>-0.0011</td>
<td>0.0073</td>
</tr>
<tr>
<td>(Other Party)</td>
<td>(0.0741)</td>
<td>(0.0716)</td>
<td>(0.0783)</td>
<td>(0.0746)</td>
</tr>
<tr>
<td>Other Party</td>
<td>-0.2526***</td>
<td>-0.2594***</td>
<td>-0.1900***</td>
<td>-0.1992***</td>
</tr>
<tr>
<td></td>
<td>(0.0116)</td>
<td>(0.0109)</td>
<td>(0.0112)</td>
<td>(0.0108)</td>
</tr>
<tr>
<td>Seniority</td>
<td>-0.0129**</td>
<td>-0.0125**</td>
<td>-0.0070</td>
<td>-0.0066</td>
</tr>
<tr>
<td></td>
<td>(0.0041)</td>
<td>(0.0042)</td>
<td>(0.0041)</td>
<td>(0.0042)</td>
</tr>
<tr>
<td>Seniority^2</td>
<td>0.0009**</td>
<td>0.0008**</td>
<td>0.0001</td>
<td>0.0005</td>
</tr>
<tr>
<td></td>
<td>(0.0003)</td>
<td>(0.0003)</td>
<td>(0.0003)</td>
<td>(0.0003)</td>
</tr>
<tr>
<td>Distance to Median</td>
<td>---</td>
<td>---</td>
<td>-0.2587***</td>
<td>-0.2472***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.0163)</td>
<td>(0.0156)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.0259*</td>
<td>-0.0905*</td>
<td>0.0598***</td>
<td>-0.0172</td>
</tr>
<tr>
<td></td>
<td>(0.0106)</td>
<td>(0.0419)</td>
<td>(0.0116)</td>
<td>(0.0440)</td>
</tr>
</tbody>
</table>

Fixed Effects No Yes No Yes

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>8,121</td>
<td>8,121</td>
<td>8,121</td>
<td>8,121</td>
</tr>
<tr>
<td>R^2</td>
<td>0.08</td>
<td>0.16</td>
<td>0.13</td>
<td>0.20</td>
</tr>
<tr>
<td>F</td>
<td>49.87***</td>
<td>58.99***</td>
<td>62.49***</td>
<td>64.27***</td>
</tr>
</tbody>
</table>

*p < .05; **p < .01; ***p < .001

Note: OLS coefficients with robust standard errors (clustered by member) in parentheses. Congress-specific fixed effects in models (2) and (4) are not reported.
Table 2: Predicting Presidential Appointments

<table>
<thead>
<tr>
<th></th>
<th>Full Model</th>
<th>Full Model w/ Fixed Effects</th>
<th>President’s Party</th>
<th>Other Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual–Predicted</td>
<td>0.7888***</td>
<td>0.7654***</td>
<td>0.8986**</td>
<td>0.7003*</td>
</tr>
<tr>
<td>Presidential Support</td>
<td>(0.2094)</td>
<td>(0.2374)</td>
<td>(0.3001)</td>
<td>(0.2956)</td>
</tr>
<tr>
<td>Distance to Median</td>
<td>-0.8624**</td>
<td>-0.8124**</td>
<td>-0.7682*</td>
<td>-0.9531*</td>
</tr>
<tr>
<td></td>
<td>(0.2825)</td>
<td>(0.3143)</td>
<td>(0.3447)</td>
<td>(0.4699)</td>
</tr>
<tr>
<td>Lost Reelection</td>
<td>0.6108**</td>
<td>0.6355**</td>
<td>0.6187**</td>
<td>---</td>
</tr>
<tr>
<td>(President’s Party)</td>
<td>(0.2267)</td>
<td>(0.2288)</td>
<td>(0.2266)</td>
<td></td>
</tr>
<tr>
<td>Lost Reelection</td>
<td>0.3589</td>
<td>0.3351</td>
<td>---</td>
<td>-0.0379</td>
</tr>
<tr>
<td>(Other Party)</td>
<td>(0.2781)</td>
<td>(0.3190)</td>
<td></td>
<td>(0.3054)</td>
</tr>
<tr>
<td>Retired</td>
<td>0.3479</td>
<td>0.3746</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(Other Party)</td>
<td>(0.2970)</td>
<td>(0.3131)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seniority</td>
<td>0.3056**</td>
<td>0.3581***</td>
<td>0.3831**</td>
<td>0.1493</td>
</tr>
<tr>
<td></td>
<td>(0.0997)</td>
<td>(0.1098)</td>
<td>(0.1378)</td>
<td>(0.1886)</td>
</tr>
<tr>
<td>Seniority^2</td>
<td>-0.0170</td>
<td>-0.0203*</td>
<td>-0.0246</td>
<td>-0.0025</td>
</tr>
<tr>
<td></td>
<td>(0.0092)</td>
<td>(0.0104)</td>
<td>(0.0137)</td>
<td>(0.0163)</td>
</tr>
<tr>
<td>Constant</td>
<td>-3.075***</td>
<td>-3.3378***</td>
<td>-3.245***</td>
<td>-2.4166***</td>
</tr>
<tr>
<td></td>
<td>(0.2494)</td>
<td>(0.7844)</td>
<td>(0.2834)</td>
<td>(0.4591)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fixed Effects</th>
<th>No</th>
<th>Yes</th>
<th>No</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1,905</td>
<td>1,866</td>
<td>1,162</td>
<td>743</td>
</tr>
<tr>
<td>Pseudo-R^2</td>
<td>0.044</td>
<td>0.062</td>
<td>0.044</td>
<td>0.036</td>
</tr>
<tr>
<td>Wald χ^2</td>
<td>52.46***</td>
<td>76.65***</td>
<td>38.08***</td>
<td>15.68***</td>
</tr>
</tbody>
</table>

* p < .05; ** p < .01; *** p < .001

Note: Logit coefficients with robust standard errors in parentheses. Congress-specific fixed effects in model (2) are not reported. Thirty-nine observations predicted perfectly in model (2) were dropped.
Table 3: Changes in the Probability of Presidential Appointments

<table>
<thead>
<tr>
<th></th>
<th>Full Model 1 sd / extreme</th>
<th>President’s Party 1 sd / extreme</th>
<th>Other Party 1 sd / extreme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual–Predicted Presidential Support</td>
<td>0.0173 / 0.0645</td>
<td>0.0161 / 0.0786</td>
<td>0.0229 / 0.0710</td>
</tr>
<tr>
<td>Distance to Median</td>
<td>0.0164 / 0.0215</td>
<td>0.0140 / 0.0171</td>
<td>0.0234 / 0.0368</td>
</tr>
<tr>
<td>Lost Reelection (President’s Party)</td>
<td>0.0393</td>
<td>0.0442</td>
<td>---</td>
</tr>
<tr>
<td>Lost Reelection (Other Party)</td>
<td>0.0206</td>
<td>---</td>
<td>-0.0021</td>
</tr>
<tr>
<td>Retired (Other Party)</td>
<td>0.0199</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Seniority (inflection point)</td>
<td>0.0512</td>
<td>0.0534</td>
<td>0.1123</td>
</tr>
<tr>
<td>Baseline Prob.</td>
<td>0.0514</td>
<td>0.0574</td>
<td>0.0607</td>
</tr>
</tbody>
</table>

Note: For each model, the baseline probability is estimated by setting all continuous variables at their mean values and all dummy variables at zero. For continuous variables: the cell values represent the change in probability from the baseline due to either (a) a one standard deviation change (increase for actual-predicted presidential support variable; decrease for distance-to-median variable; and increase for seniority) or (b) a move to the extreme value (maximum for the actual–predicted presidential support variable; minimum for the distance-to-median variable; and inflection point or maximum value, whichever is smaller, for seniority). For example, in the upper left-hand cell, a one standard deviation increase in the actual–predicted presidential support variable increases a lame duck’s probability of receiving an appointment by 1.73%, to 6.87% overall; whereas, a move to the variable’s maximum value (one) increases a lame duck’s probability of an appointment by 6.45%, to 11.59% overall. For dummy variables: the cell values represent the change in probability from the baseline due to a change from zero to one.