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Abstract. This paper discusses the existence of gradient estimates for the

heat kernel of a second order hypoelliptic operator on a manifold. For elliptic

operators, it is now standard that such estimates (satisfying certain conditions
on coefficients) are equivalent to a lower bound on the Ricci tensor of the

Riemannian metric. For hypoelliptic operators, the associated “Ricci curva-

ture” takes on the value −∞ at points of degeneracy of the semi-Riemannian
metric. For this reason, the standard proofs for the elliptic theory fail in the

hypoelliptic setting.

This paper presents recent results for hypoelliptic operators. Malliavin
calculus methods transfer the problem to one of determining certain infinite

dimensional estimates. Here, the underlying manifold is a Lie group, and the
hypoelliptic operators are given by the sum of squares of left invariant vector

fields. In particular, “Lp-type” gradient estimates hold for p ∈ (1,∞), and the

p = 2 gradient estimate implies a Poincaré estimate in this context.
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1. Introduction

1.1. Background. Let M be a manifold of dimension d, and let {Xi}k
i=1 be a set

of smooth vector fields on M satisfying

(HC) TmM = span ({X(m) : X ∈ L}) , ∀ m ∈ M,

where L is the Lie algebra of vector fields generated by the collection {Xi}k
i=1. This

assumption is the Hörmander condition, and the collection {Xi}k
i=1 is a Hörmander
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set. Under this assumption, by a celebrated theorem of Hörmander, the operator

(1.1) L =
k∑

i=1

X2
i

is hypoelliptic. Recall that a subelliptic operator L is said to be hypoelliptic if
Lu ∈ C∞(Ω) implies that u ∈ C∞(Ω), for all distributions u ∈ C∞(Ω)′ on any
open set Ω ⊂o M .

Notation 1.1. Let C∞
c (M) denote the set of smooth functions on M with compact

support, and let C∞
b (M) denote the set of smooth, bounded functions on M . When

M = Rn, let C∞
p (Rn) denote those functions f ∈ C∞(Rn) such that f and all of

its partial derivatives have at most polynomial growth.

Let ∇ = (X1, . . . , Xk). This paper continues the work begun in [10], considering
Lp-type gradient inequalities of the form

(1.2) |∇etL/2f |p ≤ Kp(t)etL/2 |∇f |p , p ∈ [1,∞),

for f ∈ C∞
c (M) and t > 0. For p = 1, (1.2) is equivalent to a one parameter

family of log Sobolev estimates for the heat kernel; for p = 2, (1.2) is equivalent
to a one parameter family of Poincaré estimates. The former has implications for
hypercontractivity of an associated semigroup; see [13, 14].

When L is an elliptic operator, a lower bound on the Ricci curvature is equivalent
to the estimate (1.2) holding with some coefficients Kp > 0 such that Kp(0) = 1
and K̇p(0) exists. In particular, in the elliptic setting, (1.2) holds with exponential
coefficients Kp(t) = epkt, where −2k is the lower bound on the Ricci curvature;
see for example [2, 3, 4]. However, an operator L of the form (1.1) need not be
elliptic. The principle symbol of L at ξ ∈ T ∗mM is given by σL (ξ) =

∑k
i=1 [ξ (Xi)]

2.
By definition, the operator L is degenerate at points m ∈ M where there exists
0 6= ξ ∈ T ∗mM such that σL (ξ) = 0. At points of degeneracy of L, the Ricci
tensor is not well defined and should be interpreted to take the value −∞ in some
directions. Thus, there exists no lower bound on the Ricci curvature in this case.
Nevertheless, it is reasonable to ask if inequalities of the form (1.2) might still hold,
perhaps with some discontinuity in the coefficients Kp near t = 0. In particular,
under what conditions do functions Kp (t) < ∞ exist such that (1.2) is satisfied for
all f ∈ C∞

c (M) and t > 0?
The paper [10] addressed the special case of the real three-dimensional Heisen-

berg Lie group, and the estimate (1.2) was proved to hold for all p > 1 with a
constant coefficient Kp(t) ≡ Kp, yielding a Poincaré estimate in this case. Using
analytic methods in [20], Li was able to prove (1.2) on the Heisenberg group for
p = 1, yielding the log Sobolev estimate. Here in this paper, the case is addressed
where the manifold M is a general Lie group and the vector fields {Xi}k

i=1 are
invariant under left translation.

Related results appear in Kusuoka and Stroock [19], Picard [26], and Auscher,
Coulhon, Duong, and Hofmann [1]. Also, [1, 6] include some potential applications
of the result proven here.
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1.2. Statement of results. Let G be a d-dimensional Lie group with Lie algebra
g = Lie(G) and identity element e. Let Lg denote left translation by an element
g ∈ G, and let Rg denote right translation. Suppose {Xi}k

i=1 ⊂ g is a linearly
independent Lie generating set; that is, there exists some m ∈ N such that

(1.3) span
{
Xi, [Xi1 , Xi2 ], [Xi1 , [Xi2 , Xi3 ]], . . . , [Xi1 , [· · · , [Xim−1 , Xim

] · · · ]] :

i, ir ∈ {1, . . . , k}, r ∈ {1, . . . ,m}
}

= g.

Notation 1.2. Let Σ = Σ0 := {X1, . . . , Xk} and Σr be defined inductively by

Σr := {[Xi, V ] : V ∈ Σr−1, i = 1, . . . , k},
for all r ∈ N. Since {Xi}k

i=1 is a Lie generating set, there is a finite m such that

span (∪m
r=0Σr) = g.

Let g0 := span(Σ0), and let {Yj}d−k
j=1 ⊂ ∪m

r=1Σr be a basis of g/g0. Define an inner
product 〈·, ·〉 on g by making {Xi}k

i=1 ∪ {Yj}d−k
j=1 an orthonormal set. Note then

that {Xi}k
i=1 is an orthonormal basis of g0. Extend 〈·, ·〉 to a right invariant metric

on G by defining 〈·, ·〉g : TgG× TgG → R as

〈v, w〉g :=
〈
Rg−1∗v,Rg−1∗w

〉
, for all v, w ∈ TgG.

The g subscript will be suppressed when there is no chance of confusion.

Notation 1.3. Given an element X ∈ g, let X̃ denote the left invariant vector field
on G such that X̃(e) = X, where e is the identity of G. Recall that X̃ left invariant
means that the vector field commutes with left translation in the following way:

X̃(f ◦ Lg) = (X̃f) ◦ Lg,

for all f ∈ C1(G). Similarly, let X̂ denote the right invariant vector field associated
to X.

Definition 1.4. The left invariant gradient on G is the operator on C1(G) given
by

∇ := (X̃1, . . . , X̃k).
The subLaplacian on G is the second-order operator acting on C2(G) given by

L :=
k∑

i=1

X̃2
i .

Remark 1.5. Since {Xi}k
i=1 is a Lie generating set, {X̃i}k

i=1 satisfies the Hörmander
condition (HC) and Hörmander’s theorem [15] implies that L is hypoelliptic.

Let L2(G) denote the space of square integrable functions on G with respect to
right invariant Haar measure. Then L is a densely defined, symmetric operator on
L2(G) and the symmetric bilinear form associated to L is given by E0(f1, f2) :=
(−Lf1, f2)L2(G). Note that E0 is positive, and so E0 is closable. The minimal closure
E is associated to a self-adjoint operator L̄ which is an extension of L, called the
Friedrichs extension of L.
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Definition 1.6. Let Pt denote the heat semigroup etL̄/2, where L̄ is the Friedrichs
extension of L|C∞c (G) to L2(G, dg) with dg right Haar measure on G. By the left
invariance of L and the satisfaction of the Hörmander condition, Pt admits a left
convolution kernel pt such that

Ptf(h) = f ∗ pt(h) =
∫

G

f(hg)pt(g) dg,

for all f ∈ C∞
c (G). The function pt is called the heat kernel of G.

The operator Pt is a symmetric Markov semigroup. By Remark 1.5, L is a
hypoelliptic operator, and so pt is a smooth density on G. In the sequel, let L
denote its own Friedrichs extension. For the standard semigroup theory used here,
see for example [7].

Notation 1.7. Let Kp(t) be the best function such that

(Ip) |∇Ptf |p ≤ Kp(t)Pt|∇f |p, p ∈ [1,∞),

for all f ∈ C∞
c (G) and t > 0.

Theorem 1.8. For all p ∈ (1,∞), Kp(t) < ∞ for all t > 0. If G is a nilpotent Lie
group, then there exists a constant Kp < ∞ such that Kp(t) ≤ Kp for all t > 0.

This theorem was established in [10] in the case of the real three-dimensional
Heisenberg Lie group. The method of proof in this case is analogous. The heat
kernel pt(g) dg may be realized as the distribution in t of the Cartan rolling map
on G, the process ξ satisfying the Stratonovich stochastic differential equation

dξt =
k∑

i=1

X̃i(ξt) ◦ dbi
t, with ξ0 = e,

where b1, . . . , bk are k independent real-valued Brownian motions. Thus, for all
f ∈ C∞

c (G),
Ptf(e) = E[f(ξt)].

Sections 2.2 and 2.3 discuss properties of ξ. This representation of Pt transforms
the finite dimensional problem to a problem on Wiener space. Section 2.4 describes
a standard “lifting” procedure which constructs vector fields Xi on Wiener space
from the vector fields X̃i via the map ξ. Then Malliavin’s probabilistic techniques on
proving hypoellipticity give componentwise bounds of Pt(X̃if)(e) = E[(X̃if)(ξt)] =
E[Xi(f(ξt))]. Section 2.1 reviews some calculus on Wiener space necessary for this
argument.

Section 3 contains the proof of Theorem 1.8. Results from Section 2 show that
for a Lie group G, Kp(t) < ∞ for all t > 0; however, this method does not give
any estimates on the behavior of Kp with respect to t. In a generalization of
the Heisenberg scaling argument in [10], Section 3.2 addresses the special case of
nilpotent and stratified groups. When G is stratified, dilation arguments imply
that the coefficients Kp are independent of the t parameter. When G is nilpotent,
covering G with a stratified group shows that there is a constant Kp such that



HYPOELLIPTIC HEAT KERNEL INEQUALITIES ON LIE GROUPS 5

Kp(t) ≤ Kp for all t > 0, and this completes the proof of Theorem 1.8. This
implies the following Poincaré estimate for the heat kernel measure in this context.

Theorem 1.9. Suppose G is a nilpotent Lie group with identity element e. Then

Ptf
2(e)− (Ptf)2(e) ≤ K2tPt|∇f |2(e),

for all f ∈ C∞
c (G) and t > 0, where K2 is the constant in Theorem 1.8 for p = 2.

Note that this theorem gives an improvement in the elliptic case with negative
curvature, giving linear coefficients where the estimate was previously known only
with coefficients of exponential growth. This is stated explicitly in Corollary 3.16.
It could be conjectured that this is true for every Riemannian manifold; that is,
for any Riemannian manifold equipped with a Laplace Beltrami operator, Poincaré
estimates for the associated heat kernel hold with linear coefficients.

Acknowledgement. I thank Bruce Driver for suggesting this problem and for
many valuable discussions throughout the preparation of this work.

2. Wiener calculus over G

2.1. Review of calculus on Wiener space. This section contains a brief in-
troduction to basic Wiener space definitions and notions of differentiability. For a
more complete exposition, consult [8, 17, 25] and references contained therein.

Let (W (Rk),F , µ) denote classical k-dimensional Wiener space. That is, W =
W (Rk) is the Banach space of continuous paths ω : [0, 1] → Rk such that ω0 = 0,
equipped with the supremum norm

‖ω‖ = max
t∈[0,1]

|ωt|,

µ is standard Wiener measure, and F is the completion of the Borel σ-field on W
with respect to µ. By definition of µ, the process

bt(ω) = (b1
t (ω), . . . , bk

t (ω)) = ωt

is an Rk Brownian motion. For those ω ∈ W which are absolutely continuous, let

E(ω) :=
∫ 1

0

|ω̇s|2 ds

denote the energy of ω. The Cameron-Martin space is the Hilbert space of finite
energy paths,

H = H (Rk) := {ω ∈ W (Rk) : ω is absolutely continuous and E(ω) < ∞},
equipped with the inner product

(h, k)H :=
∫ 1

0

ḣs · k̇s ds, for all h, k ∈ H .

More generally, for any finite dimensional vector space V equipped with an inner
product, let W (V ) denote path space on V , and H (V ) denote the set of Cameron-
Martin paths, where the definitions are completely analogous, replacing the inner
products and norms where necessary.
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Definition 2.1. Denote by S the class of smooth cylinder functionals, random
variables F : W → R such that

(2.1) F (ω) = f(ωt1 , . . . , ωtn
),

for some n ≥ 1, 0 < t1 < · · · < tn ≤ 1, and function f ∈ C∞
p ((Rk)n) (see Notation

1.1). For E be a real separable Hilbert space, let SE be the set of E-valued smooth
cylinder functions F : W → E of the form

(2.2) F =
m∑

j=1

Fjej ,

for some m ≥ 1, ej ∈ E, and Fj ∈ S.

Definition 2.2. Fix h ∈ H . The directional derivative of a smooth cylinder
functional F ∈ S of the form (2.1) along h is given by

∂hF (ω) :=
d

dε

∣∣∣∣
0

F (ω + εh) =
n∑

i=1

∇if(ωt1 , . . . , ωtn
) · hti

,

where ∇if is the gradient of f with respect to the ith variable.

The following integration by parts result is standard; see for example Theorem
8.2.2 of Hsu [16].

Proposition 2.3. Let F,G ∈ S and h ∈ H . Then

(∂hF,G)H = (F, ∂∗hG)H ,

where ∂∗h = −∂h +
∫ 1

0
ḣs · dbs.

Definition 2.4. The gradient of a smooth cylinder functional F ∈ S is the random
process DtF taking values in H such that (DF, h)H = ∂hF . It may be determined
that, for F of the form (2.1),

DtF =
n∑

i=1

∇if(ωt1 , . . . , ωtn
)(ti ∧ t),

where s ∧ t = min{s, t}. For F ∈ SE of the form (2.2), define the derivative DtF
to be the random process taking values in H ⊗ E given by

DtF :=
m∑

j=1

DtFj ⊗ ej .

Iterations of the derivative for smooth functionals F ∈ S are given by

Dk
t1,...,tk

F = Dt1 · · ·Dtk
F ∈ H ⊗k,

for k ∈ N. For F ∈ SE ,

DkF =
m∑

j=1

DkFj ⊗ ej ,
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and these are measurable functions defined almost everywhere on [0, 1]k ×W . The
operator D on SE is closable, and there exist closed extensions Dk to Lp(W ,H ⊗k⊗
E); see, for example [25], Theorem 8.28 of [16], or Theorem 8.5 of [17]. Denote the
closure of the derivative operator also by D and the domain of Dk in Lp([0, 1]k×W )
by Dk,p, which is the completion of the family of smooth Wiener functionals S with
respect to the seminorm ‖ · ‖k,p,E on SE given by

‖F‖k,p,E :=

 k∑
j=0

E(‖DjF‖p
H ⊗j⊗E)

1/p

,

for any p ≥ 1. Let

Dk,∞(E) :=
⋂
p>1

Dk,p(E) and D∞(E) :=
⋂
p>1

⋂
k≥1

Dk,p(E).

When E = R, write Dk,p(R) = Dk,p, Dk,∞(R) = Dk,∞, and D∞(R) = D∞.

Definition 2.5. Let D∗ denote the L2(µ)-adjoint of the derivative operator D,
which has domain in L2(W × [0, 1],H ) consisting of functions G such that

|E[(DF, G)H ]| ≤ C‖F‖L2(µ),

for all F ∈ D1,2, where C is a constant depending on G. For those functions G in
the domain of D∗, D∗G is the element of L2(µ) such that

E[FD∗G] = E[(DF, G)H ].

It is known that D is a continuous operator from D∞ to D∞(H ), and similarly,
D∗ is continuous from D∞(H ) to D∞; see for example Theorem V-8.1 and its
corollary in [17] .

Malliavin [21, 22] introduced the notion of derivatives of Wiener functionals
and applied it to the regularity of probability laws induced by the solutions to
stochastic differential equations at fixed times. The notion of Sobolev spaces of
Wiener functionals was first introduced by Shigekawa [28] and Stroock [29, 30].

2.2. Rolling map. Now, let G be a Lie group with identity e and Lie algebra
Lie(G) = g, and suppose {Xi}k

i=1 ⊂ g is a linearly independent Lie generating set,
in the sense of Equation (1.3). Recall that {Xi}k

i=1 is an orthonormal basis of the
subspace g0 = span({Xi}k

i=1) with respect to the inner product defined on g.

Notation 2.6. Let Ad : G → End(g) denote the adjoint representation of G with
differential ad := d(Ad) : g → End(g). That is, Ad(g) = Adg = Lg∗Rg−1∗, for all
g ∈ G, and ad(X) = adX = [X, ·], for all X ∈ g. For any function ϕ ∈ C1(G),
define ∇̂ϕ, ∇̃ϕ : G → g such that, for any g ∈ G and X ∈ g,〈

∇̂ϕ(g), X
〉

:= 〈dϕ(g), Rg∗X〉 = (X̂ϕ)(g)〈
∇̃ϕ(g), X

〉
:= 〈dϕ(g), Lg∗X〉 = (X̃ϕ)(g).
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The sequel will use the following facts:〈
∇̂ϕ(g), X

〉
=
〈
dϕ(g), Lg∗Lg−1∗Rg∗X

〉
=
〈
dϕ(g), Lg∗Adg−1 X

〉
=
〈
∇̃ϕ(g),Adg−1 X

〉(2.3)

and similarly

(2.4)
〈
∇̃ϕ(g), X

〉
=
〈
∇̂ϕ(g),Adg X

〉
.

Now suppose {bi
t}k

i=1 are k independent real-valued Brownian motions. Then

~bt := Xib
i
t :=

k∑
i=1

Xib
i
t

is a (g0, 〈·, ·〉) Brownian motion. In the sequel, the convention of summing over
repeated upper and lower indices will be observed. Let ξ : [0, 1] ×W → G denote
the solution to the Stratonovich stochastic differential equation

(2.5) dξt = ξt ◦ d~bt := Lξt∗ ◦ d~bt = Lξt∗Xi ◦ dbi
t = X̃i(ξt) ◦ dbi

t, with ξ0 = e.

The solution ξ exists by the standard theory; see, for example, Theorem V-1.1
of [17]. Additionally, Remark V-10.3 of [17] implies that Pt = etL/2, with L =∑k

i=1 X̃2
i , is the associated Markov diffusion semigroup to ξ, where Pt is as defined

in Definition 1.6; that is, νt := (ξt)∗µ = pt(g) dg is the density of the transition
probability of the diffusion process ξt, where dg denotes right Haar measure, and

(2.6) (Ptf)(e) = E[f(ξt)],

for any f ∈ C∞
c (G), where the right hand side is expectation conditioned on ξ0 = e.

The following theorem is proved in [23].

Theorem 2.7. For any f ∈ C∞
c (G), f(ξt) ∈ D∞ for all t ∈ [0, 1]. In particular,

D[f(ξt)] ∈ H ⊗ Rk and

(2.7) (D[f(ξt)])i =
〈
∇̂f(ξt),

∫ ·∧t

0

Adξτ
Xi dτ

〉
,

for i = 1, . . . , k, componentwise in H , and, for any h ∈ H ,

∂hf(ξt) =
〈
∇̂f(ξt),

∫ t

0

Adξs Xiḣ
i
s ds

〉
=
〈

df(ξt), Rξt∗

∫ t

0

Adξs Xiḣ
i
s ds

〉
.(2.8)

Notation 2.8. Let
⋂

p>1 Lp(µ) =: L∞−(µ).

2.3. Covariance matrix. The Malliavin covariance matrix of ξ is the matrix
σt(ω) := ξ′t(ω)ξ′t(ω)∗ : Tξt(ω)G → Tξt(ω)G, where ξ′t(ω) : H → Tξt(ω)G is the
Frechet derivative given by

ξ′t(ω)h :=
d

dε

∣∣∣∣
0

ξt(ω + εh),



HYPOELLIPTIC HEAT KERNEL INEQUALITIES ON LIE GROUPS 9

for all h ∈ H , and its adjoint ξ′t(ω)∗ : Tξt(ω) → H is computed relative to the
Cameron-Martin inner product on H and the chosen metric on G. Note that
Equation (2.8) implies that

(2.9) ξ′t(ω)h = Rξt∗

∫ t

0

Adξs
Xiḣ

i
s ds

Notation 2.9. In the following, let Ad
†

ξt
denote the adjoint of Adξt

as an operator
on g, and let P : g → g0 be orthogonal projection onto the subspace g0.

Theorem 2.10. The Malliavin covariance matrix of ξ is

(2.10) σt := ξ′t(ω)ξ′t(ω)∗ = Rξt∗

(∫ t

0

Adξs P Ad†ξs
ds

)
Rtr

ξt∗.

Let σ̄t =
∫ t

0
Adξs

P Ad†ξs
ds, and ∆t := det σ̄t. Then ∆t > 0 a.e., and so σ̄t is

invertible a.e. for t > 0. Moreover,

∆−1
t ∈ L∞−(µ).

Proof. To determine σt = ξ′t(ω)ξ′t(ω)∗, first compute ξ′t(ω)∗ : Tξt(ω)G → H , the
adjoint in ξ′t(ω) with respect to the Cameron-Martin inner product and the right
invariant metric on TG. By Equation (2.9), for any X ∈ g,

(ξ′t(ω)∗(Rξt∗X), h)H = 〈Rξt∗X, ξ′t(ω)h〉

=
〈

Rξt∗X, Rξt∗

∫ t

0

Adξs
Xiḣ

i
s ds

〉
=
〈

X,

∫ t

0

Adξs Xiḣ
i
s ds

〉
=
∫ t

0

〈
Ad

†

ξs
X, Xi

〉
ḣi

sds,

where the penultimate equality follows from the right invariance of the metric on
G. It then follows that

(2.11)
d

ds
[ξ′t(ω)∗(Rξt∗X)]is = 1s≤t

〈
Ad†ξs

X, Xi

〉
,

componentwise in H . Combining Equations (2.9) and (2.11),

ξ′t(ω)ξ′t(ω)∗(Rξt∗X) = Rξt∗

∫ t

0

Adξs Xi
d

ds
[ξ′t(ω)∗(Rξt∗X)]is ds

=
k∑

i=1

Rξt∗

∫ t

0

Adξs Xi

〈
Ad†ξs

X, Xi

〉
ds

= Rξt∗

∫ t

0

Adξs
P Ad†ξs

Xds,

and Equation (2.10) follows.
The proof that ∆t > 0 and ∆−1

t ∈ L∞−(µ) is by now standard and relies on
satisfaction of the Hörmander bracket condition, Lie({Xi}k

i=1) = g; for example, a
simple adaptation of the proof of Theorem 8.6 in Driver [8] will work.
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Remark 2.11. By the general theory, Theorem 2.10 implies νt = Law(ξt) is a smooth
measure; see for example Remark V-10.3 of [17].

2.4. Lifted vector fields and L2-adjoints. Throughout this section, t ∈ [0, 1]
will be fixed.

Definition 2.12. Given X ∈ g, let X̃ be the associated left invariant vector field
on G. Define the “lifted vector field” X of X̃ as

(2.12) X = Xt := ξ′t(ω)∗ [ξ′t(ω)ξ′t(ω)∗]−1
X̃(ξt) = ξ′t(ω)∗σ−1

t X̃(ξt) ∈ H ,

acting on functions F ∈ D1,2 by

XF = (DF,X)H .

Proposition 2.13. For any X ∈ g, X ∈ D∞(H ), and

X[f(ξt)] = (X̃f)(ξt),

for any f ∈ C∞(G),

Proof. Combining Equations (2.10) and (2.11) gives

d

ds
Xi

s = 1s≤t

〈
Ad†ξs

(∫ t

0

Adξr
P Ad†ξr

dr

)−1

Adξt
X, Xi

〉
.

Thus, rewrite Equation (2.12) explicitly as

Xi =
∫ ·∧t

0

〈
Ad†ξs

(∫ t

0

Adξr P Ad†ξr
dr

)−1

Adξt X, Xi

〉
ds

=

〈(∫ ·∧t

0

Ad†ξs
ds

)(∫ t

0

Adξs
P Ad†ξs

ds

)−1

Adξt
X, Xi

〉
.(2.13)

A standard argument shows that W =
∫ ·
0
Adξs ds ∈ D∞(H (End(g))); see for

example Proposition 5 of [24]. Note that W †
t = Ad†ξt

: W → End(g) satisfies the
differential equation

dW †
t = ad†Xi

W †
t ◦ dbi

t, with W †
0 = I,

which is linear with smooth coefficients. Similarly, one may show that

W
†

:=
∫ ·

0

Ad†ξs
ds ∈ D∞(H (End(g))).

Also, Theorem 2.10 implies that

σ̄−1
t =

(∫ t

0

Adξs
P Ad†ξs

ds

)−1

exists and is in L∞−(µ) componentwise. Thus, Equation (2.13) implies that X ∈
D∞(H ).
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For f ∈ C∞(G) and (h1, . . . , hk) ∈ H , by Equation (2.8),

∂h[f(ξt)] = (D[f(ξt)], h)H =
〈
∇̂f(ξt),

∫ t

0

Adξs Xiḣ
i
s ds

〉
,

and so

X[f(ξt)] = (D[f(ξt)],X)H

=

〈
∇̂f(ξt),

∫ t

0

Adξs
Xi

〈
Ad†ξs

(∫ t

0

Adξr
P Ad†ξr

dr

)−1

Adξt
X, Xi

〉
ds

〉

=

〈
∇̂f(ξt),

∫ t

0

Adξs
P Ad†ξs

(∫ t

0

Adξr
P Ad†ξr

dr

)−1

Adξt
X ds

〉
=
〈
∇̂f(ξt),Adξt

X
〉

=
〈
∇̃f(ξt),Adξ−1

t
Adξt

X
〉

= (X̃f)(ξt),

where the penultimate equality used Equation (2.3).

Definition 2.14. For a vector field X acting on functions of W , denote the adjoint
of X in the L2(µ) inner product by X∗, which has domain in L2(µ) consisting of
functions G such that for all F ∈ D1,2,

E[(XF )G] ≤ c‖F‖L2(µ)

for some constant c. For functions G in the domain of X∗,

E[F (X∗G)] = E[(XF )G]

for all F ∈ D1,2.

Note that for any lifted vector field X acting on function F ∈ D1,2 as defined in
Definition 2.12,

E[XF ] = E[(DF,X)H ] = E[FD∗X].

Thus, X∗ = X∗1 = D∗X a.s. Recall that D∗ is a continuous operator from D∞(H )
into D∞; see for example Theorem V-8.1 and its corollary in [17]. Thus, for X a
vector field on W as defined in Equation (2.12), Proposition 2.13 implies that
D∗X ∈ D∞. This proves the following proposition.

Proposition 2.15. Let X̃ be a left invariant vector field on G. Then for the vector
field on W defined by

X = ξ′t(ω)∗[ξ′t(ω)ξ′t(ω)∗]−1X̃(ξt(ω)),

X∗ ∈ D∞, where X∗ is the L2(µ)-adjoint of X.
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3. Lie group inequalities

Again let G be a Lie group with identity e and Lie algebra Lie(G) = g, and
suppose {Xi}k

i=1 ⊂ g is a Hörmander set, in the sense of Equation (1.3). The
gradient ∇ = (X̃1, . . . , X̃k) and the subLaplacian L =

∑k
i=1 X̃2

i are operators on
smooth functions of G with compact support. Let L also denote the self-adjoint
extension of the subLaplacian and Pt = etL/2 be the heat semigroup as in Definition
1.6.

The following lemmas were proved in [10] in the context of the Heisenberg Lie
group (Lemmas 2.3 and 2.4). The proofs are identical in the general Lie group case.

Lemma 3.1. By the left invariance of ∇ and Pt, the inequality (Ip) holds for all
g ∈ G, f ∈ C∞

c (G), and t > 0, if and only if,

|∇Ptf |p(e) ≤ Kp(t)Pt|∇f |p(e),

for all f ∈ C∞
c (G) and t > 0, where e ∈ G is the identity element.

Lemma 3.2. For X ∈ g,
X̃Ptf(e) = PtX̂f(e).

for all f ∈ C∞
c (G). More generally,

X̂Ptf = PtX̂f,

from which the previous equation follows, since X̂ = X̃ at e.

(The proof of Lemma 3.2 is actually easier than its analogue Lemma 2.4 in
[10], since working with functions with compact support – versus functions with
polynomial growth – requires only the invariance of Haar measure to justify passing
the derivative through the integral.)

3.1. Lp-type gradient estimate (p > 1).

Notation 3.3. For each r ∈ {0, 1, . . . ,m}, let Λr = Λk,r be the set of multi-indices
α = (α0, α1, . . . , αr) ∈ {1, . . . , k}r+1. For any α ∈ Λr, define

α′ := (α1, . . . , αr) and

α := (αr, . . . , α0) = α reversed .

Define the order of α by |α| := r + 1. Let

Xα = [Xαr , [· · · , [Xα1 , Xα0 ] · · · ]] = adXαr
· · · adXα1

Xα0 and

Xα = Xαr
· · ·Xα0 .

When r = 0 and |α| = 1, that is, α = (α0), then Xα = Xα0 = Xα. For each
α ∈ Λr, there exist εβ,α ∈ Z such that

Xα =
∑

β∈Λr

εβ,αXβ .
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Proposition 3.4. For any X ∈ g, X̂ may be written as

(3.1) X̂ =
m∑

r=0

∑
α∈Λr

cαX̃α,

with cα : G → R (some of these are 0) such that cα(ξt) ∈ D∞, for all t ∈ [0, 1].

Proof. Recall from Notation 1.2 that
Σr = {[Xi1 , [· · · , [Xir−1 , Xir ] · · · ] : i1, . . . , ir ∈ {1, . . . , k}}

= {Xα : α ∈ Λr},

for r = 0, . . . ,m. Recall also from Notation 1.2 that {Xi, Yj : i ∈ {1, . . . , k}, j ∈
{1, . . . , d − k}} of g is an orthonormal basis, where d = dim(G) and, for each
j ∈ {1, . . . , d − k}, Yj is some commutator Xα(j) ∈ Σr(j) for some α(j) ∈ Λr(j),
r(j) ∈ {1, . . . ,m}. Thus, for any g ∈ G and X ∈ g,

X̂(g) = Rg∗X = Lg∗Lg−1∗Rg∗X = Lg∗Adg−1 X

= Lg∗

 k∑
i=1

〈
Adg−1 X, Xi

〉
Xi +

d−k∑
j=1

〈
Adg−1 X, Yj

〉
Yj


= Lg∗

 k∑
i=1

〈
Adg−1 X, Xi

〉
Xi +

d−k∑
j=1

∑
α∈Λr(j)

εα,α(j)

〈
Adg−1 X, Yj

〉
Xα


=

k∑
i=1

〈
Adg−1 X, Xi

〉
X̃i(g) +

d−k∑
j=1

∑
α∈Λr(j)

εα,α(j)

〈
Adg−1 X, Yj

〉
X̃α(g)

where εα,α(j) ∈ Z. So

X̂(g) =
m∑

r=0

∑
α∈Λr

cαX̃α(g),

where

cα(g) =
{ 〈

Adg−1 X, Xi

〉
when r = 0 and α = (i)

ε
〈
Adg−1 X, Yj

〉
, ε ∈ Z when r ∈ {1, . . . ,m} .

Note that Adξt satisfies the Stratonovich stochastic differential equation

d Adξ = Adξ ◦ addb = Adξ adXi
◦dbi, with Adξ0 = I.

By differentiating the identity Adξt
Ad−1

ξt
= I, one may verify that Ad−1

ξt
= Adξ−1

t

satisfies

d Adξ−1 = − ◦ addb Adξ−1 = − adXi
Adξ−1 ◦dbi, with Adξ−1

0
= I

a linear differential equation with smooth coefficients. Then by Theorem V-10.1
of Ikeda and Watanabe [17], Adξ−1

t
∈ D∞(End(g)) componentwise with respect to

some basis.
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The function u : End(g) → R given by u(W ) = 〈WX,Y 〉 is a smooth function
for any fixed X, Y ∈ g. Thus, u(Adξ−1

t
) ∈ D∞ for all t ∈ [0, 1]. Since cα(ξt) =

εu(Adξ−1
t

), with Y = Xi or Yj , this implies that cα(ξt) ∈ D∞, for all α ∈ Λr.

Theorem 3.5. For all p ∈ (1,∞), Kp(t) < ∞, where Kp(t) are the functions
defined in Notation 1.7.

Proof. Lemma 3.1 implies that the inequality (Ip) is translation invariant on
groups. Thus it suffices to determine a finite coefficient Kp(t) such that the in-
equality holds at the identity.

Note that for any X ∈ g, Lemma 3.2 and Equation (3.1) imply that

|X̃Ptf |2(e) = |X̂Ptf |2(e) = |PtX̂f |2(e) ≤ C
m∑

r=0

∑
α∈Λr

|PtcαX̃αf |2(e),

for a constant C = C(k, m). Equation (2.6) implies that, for any f ∈ C∞
c (G),

Ptf(e) = E[f(ξt)], where ξ is the solution to the Stratonovich equation (2.5). Thus,
for any α ∈ Λr,

|PtcαX̃αf |(e) ≤ E|cα(ξt)(X̃αf)(ξt)| = E|cα(ξt)Xα′ [(X̃α0f)(ξt)]|

= E
∣∣∣(Xα′

)∗
[cα(ξt)](X̃α0f)(ξt)

∣∣∣
≤
(

E
∣∣∣(Xα′

)∗
[cα(ξt)]

∣∣∣q)1/q (
E|(X̃α0f)(ξt)|p

)1/p

=
(

E
∣∣∣(Xα′

)∗
[cα(ξt)]

∣∣∣q)1/q (
Pt|X̃α0f |p(e)

)1/p

≤
(

E
∣∣∣(Xα′

)∗
[cα(ξt)]

∣∣∣q)1/q

(Pt|∇f |p(e))1/p
,

by Hölder’s inequality, where q is the conjugate exponent to p, Xα is the lifted vector
field on W of the vector field X̃α, as defined in Equation (2.12), and (Xα)∗ =

X∗
αr
· · ·X∗

α0
(so

(
Xα′

)∗
= X∗

α1
· · ·X∗

αr
). Propositions 2.15 and 3.4 imply that(

Xα′
)∗

[cα(ξt)] ∈ L∞−(µ), for all α ∈ Λr.
So in particular, using the above with X = Xi gives

|∇Ptf |p(e) =

(
k∑

i=1

|X̃iPtf |2(e)

)p/2

≤ C

[
k∑

i=1

m∑
r=0

∑
α∈Λr

(
E
∣∣∣(Xα′

)∗
[ci,α(ξt)]

∣∣∣q)p/q
]

Pt|∇f |p(e),

where C = C(k, m, p) and q = p
p−1 . Thus, the inequality (Ip) holds with

(3.2) Cp(t) = C(k,m, p)
k∑

i=1

m∑
r=0

∑
α∈Λr

(
E
∣∣∣(Xα′

)∗
[ci,α(ξt)]

∣∣∣q)p/q

.
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Therefore, Kp(t) ≤ Cp(t) < ∞ for all t > 0 and p ∈ (1,∞).
It is important to note that, in this general Lie group case, there is currently no

good control over the behavior of the functions Cp in Equation (3.2) with respect
to t. In fact, from certain scaling arguments, it is expected that Cp(t) → ∞ as
t → 0; see for example [5, 18]. However, these coefficients are almost certainly not
optimal.

To explore cases where the behavior of these coefficients is more understood,
it will become useful to extend the set of test functions considered. The following
proposition relaxes the condition of compact support to boundedness with bounded
first order derivatives.

Proposition 3.6. For all p ∈ (1,∞),

|∇Ptf |p ≤ Kp(t)Pt|∇f |p,

for all f ∈ C∞
b (G) with bounded derivatives of first order and t > 0.

Proof. Let f ∈ C∞
b (G) with bounded first order derivatives, and let ϕm ∈

C∞
c (G, [0, 1]) be a sequence of functions such that ϕm ↑ 1, ϕm(g) = 1 when |g| ≤ m

(for some norm on G), and supm supg∈G |X̃ϕm| < ∞ for all X ∈ g; see Lemma
3.6 of [9]. Then fm = ϕmf ∈ C∞

c (G), and so there exists an optimal function
Kp(t) < ∞ such that

|∇Ptfm|p ≤ Kp(t)Pt|∇fm|p.
for all t > 0. For any X ∈ g,

lim
m→∞

|X̃fm − X̃f | = lim
m→∞

|(X̃ϕm)f + ϕmX̃f − X̃f |

≤ lim
m→∞

|X̃ϕm||f |+ |ϕm − 1||X̃f | = 0

implies that |∇fm| → |∇f | boundedly. Thus, by the dominated convergence theo-
rem,

lim
m→∞

Pt|∇fm|p = Pt|∇f |p.

Similarly,

lim
m→∞

|X̃Ptfm − X̃Ptf | = lim
m→∞

|PtX̂fm − PtX̂f |

≤ lim
m→∞

Pt|X̂fm − X̂f |

≤ lim
m→∞

Pt(|X̂ϕm||f |) + Pt(|ϕm − 1||X̂f |) = 0

by dominated convergence, and hence

lim
m→∞

|∇Ptfm| = |∇Ptf |.

Thus,

|∇Ptf |p = lim
m→∞

|∇Ptfm|p ≤ Kp(t) lim
m→∞

Pt|∇fm|p = Kp(t)Pt|∇f |p.
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3.2. Poincaré inequality. The following result is a direct corollary to Theorem
3.5. The proof is completely analogous to the proof of Theorem 4.2 in [10] in the
Heisenberg Lie group context.

Theorem 3.7 (Poincaré Inequality). Let K2(t) be the best function for which (Ip)
holds for p = 2, and let pt(g) dg be the hypoelliptic heat kernel. Then

(3.3)
∫

G

f2(g)pt(g) dg −
(∫

G

f(g)pt(g) dg

)2

≤ Λ(t)
∫

G

|∇f |2(g)pt(g) dg,

for all f ∈ C∞
c (G) and t > 0, where

Λ(t) =
∫ t

0

K2(s) ds.

Proof. Let Ft(g) = (Ptf)(g). Then

d

ds
Pt−sF

2
s = Pt−s

(
−1

2
LF 2

s + FsLFs

)
= −Pt−s|∇Fs|2.

Integrating this equation on s implies that

Ptf
2 − (Ptf)2 =

∫ t

0

Pt−s|∇Fs|2 ds

=
∫ t

0

Pt−s|∇Psf |2 ds

≤
∫ t

0

K2(s)Pt−sPs|∇f |2 ds =
(∫ t

0

K2(s) ds

)
· Pt|∇f |2

where the inequality follows from Theorem 3.5. Evaluating the above at e ∈ G
gives the desired result.

This theorem is less useful in the general Lie group case because nothing is
known about the integrability of Kp(t). However, the next two sections show that,
when G is a nilpotent Lie group, Kp(t) is a bounded function for all p ∈ (1,∞). In
particular, when p = 2, this implies the Poincaré inequality holds with Λ(t) < ∞,
for all t > 0.

3.2.1. Stratified nilpotent Lie groups.

Definition 3.8. A Lie algebra g is said to be nilpotent if adX is a nilpotent endo-
morphism of g for all X ∈ g, that is, if there exists m ∈ N such that

adY1 · · · adYm−1 Ym = [Y1, [· · · , [Ym−1, Ym] · · · ] = 0,

for any Y1, . . . , Ym ∈ g. If m is the smallest number for which the above equality
holds, g is nilpotent of step m. A Lie group G is nilpotent if g = Lie(G) is a
nilpotent Lie algebra.

Definition 3.9. A family of dilations on a Lie algebra g is a family of algebra
automorphisms {Φr}r>0 on g of the form Φr = exp(W log r), where W is a diago-
nalizable linear operator on g with positive eigenvalues.
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Definition 3.10. A stratified group G is a simply connected nilpotent group for
which there exists a subset of the Lie algebra V1 ⊂ g, such that g = ⊕m

j=1Vj with
Vj+1 = [V1, Vj ], for j = 1, . . . ,m− 1, and Vm+1 = [V1, Vm] = {0}.

For a general exposition on nilpotent Lie groups and dilations, see [11, 12] and
references contained therein. If G is a stratified Lie group, a natural family of
dilations may be defined on g by setting Φr(X) = rjX, for all X ∈ Vj . The
generator W of this dilation acts on parts of the vector space decomposition by
WVj = jVj , for each j = 1, . . . ,m. The automorphism Φr induces a group dilation
φr via the exponential maps, φr = exp ◦Φr ◦ exp−1. Since G is a simply connected
nilpotent group, the exponential map is in fact a global diffeomorphism on g, and
exp−1 exists everywhere on G; see for example Theorem 3.6.2 of Varadarajan [31].
Then for each X ∈ V1,

(3.4) X̃(f ◦ φr)(g) =
d

dε

∣∣∣∣
0

(f ◦ φr)(geεX) =
d

dε

∣∣∣∣
0

f(φr(g)φr(eεX))

=
d

dε

∣∣∣∣
0

f(φr(g)erεX) =
d

dε

∣∣∣∣
0

rf(φr(g)eεX) = r(X̃f ◦ φr)(g),

for all f ∈ C1(G), where the second equality used thatφr is a homomorphism. Let
{Xi}k

i=1 ⊂ V1 be a basis of V1, and consider the operators ∇ = (X̃1, . . . , X̃k) and
L =

∑k
i=1 X̃2

i . Equation (3.4) implies that

(3.5) ∇(f ◦ φr) = r(∇f) ◦ φr,

and thus the following proposition.

Proposition 3.11. Let L denote the self-adjoint extension of
∑k

i=1 X̃2
i , and Pt =

etL/2 be as in Definition 1.6. Then

L(f ◦ φr) = r2(Lf) ◦ φr

and

(3.6) Pt(f ◦ φr) = etL/2(f ◦ φr) =
(
er2tL/2f

)
◦ φr = (Pr2tf) ◦ φr,

for any f ∈ C∞
c (G).

Proof. Let E0(f, h) :=
∑k

i=1(X̃if, X̃ih)L2(G) be a Dirichlet form associated to
L. Recall from Section 1 that E0 has a closed extension E . By definition,

f1 ∈ C∞
c (G) and Lf1 = h ⇐⇒ E(f1, f2) = (h, f2), ∀f2 ∈ Dom(E).
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Now note that

E0(f ◦ φr, f ◦ φr) =
k∑

i=1

∫
G

|X̃i(f ◦ φr)|2(g) dg

=
k∑

i=1

r2

∫
|(X̃if) ◦ φr|2(g) dg

=
k∑

i=1

r2

∫
|X̃if |2(g)J(r−1) dg = r2J(r−1)E0(f, f),

where J(r) is the Jacobian of the transformation φr,

J(r) =
m∏

j=1

(rj)dj

with dj = dim(Vj). Thus, J(r−1) = J(r)−1. So f ∈ Dom(E) implies that f ◦ φr ∈
Dom(E), and, in general, E(f ◦ φr, h ◦ φr) = r2J(r−1)E(f, h), for f, h ∈ Dom(E).
Replacing h here by h ◦ φr−1 gives

E(f ◦ φr, h) = r2J(r−1)E(f, h ◦ φr−1)

= r2J(r−1)(Lf, h ◦ φr−1)L2(G)

= r2J(r−1)J(r)(Lf ◦ φr, h)L2(G) = r2(Lf ◦ φr, h)L2(G),

implies that if f ∈ Dom(L), then f ◦ φr ∈ Dom(L) and L(f ◦ φr) = r2Lf ◦ φr.
Now, for r > 0, let Ur : L2(G) → L2(G) be the unitary operator given by

Urf = 1√
J(r−1)

f ◦ φr. Then

LUr = r2UrL = Ur(r2L)

as operators, and thus U−1
r LUr = r2L. Then

U−1
r etL/2Ur = etU−1

r LUr/2 = er2tL/2,

from which it follows that

r2etL/2(f ◦ φr) = etL/2Urf = Ure
r2tL/2f = r2(er2tL/2f) ◦ φr.

This give the following proposition.

Proposition 3.12. Suppose G is a stratified Lie group with vector space decompo-
sition ⊕m

j=1Vj. Let {Xi}k
i=1 ⊂ V1, ∇, and L be as above, and let p ∈ (1,∞). If Kp

is the best constant such that

|∇P1f |p ≤ KpP1|∇f |p,

for all f ∈ C∞
c (G), then Kp(t) = Kp for all t > 0, where Kp(t) is the function

defined in Notation 1.7.
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Proof. By Equations (3.5) and (3.6),

|∇Pt(f ◦ φt−1/2)|p = |∇[(P1f) ◦ φt−1/2 ]|p = |t−1/2(∇P1f) ◦ φt−1/2 |p

≤ Kpt
−p/2 (P1|∇f |p) ◦ φt−1/2 = Kpt

−p/2Pt (|∇f |p ◦ φt−1/2)

= KpPt (|∇f ◦ φt−1/2)|p) .

Replacing f by f ◦ φt1/2 in the above computation proves the assertion. More-
over, reversing the above argument shows that |∇Ptf |p ≤ KpPt|∇f |p implies that
|∇P1f |p ≤ KpP1|∇f |p.

3.2.2. Nilpotent Lie groups. Now let G be a general nilpotent Lie group. Because
not all nilpotent Lie groups admit dilations, the functions Kp(t) are not scale in-
variant in this context. However, covering G with a group which has a family of
dilations adapted to its structure, shows that there exists some constant Kp < ∞
for which Kp(t) < Kp for all t > 0.

Definition 3.13. Let L = L(k,m) be the free nilpotent Lie algebra of step m
with k generators {ei}k

i=1. Then L is the unique (up to isomorphism) nilpotent
Lie algebra of rank m such that, for every nilpotent Lie algebra g of rank m and
map Π̃ : {e1, . . . , ek} → g, there exists a unique homomorphism Π : L → g which
extends Π̃. Let N = N (k,m) be the free nilpotent Lie group of rank m with k
generators, which is the simply connected group of L(k, m).

The Lie algebra L(k,m) admits a vector space decomposition by setting V1 =
span{e1, . . . , ek}. Thus, N is a stratified Lie group with Hörmander set {ei}k

i=1 ⊂ L;
for definitions and further details, see [33]. Let ∇L = (ẽ1, . . . , ẽk), L =

∑k
i=1 ẽ2

i ,
and Pt = etL /2. Theorem 3.5 and Proposition 3.12 imply that, for all p ∈ (1,∞),
there exist constants KL

p < ∞ such that

(3.7) |∇LPtf |p ≤ KL
p Pt|∇Lf |p,

for all f ∈ C∞
c (N ) and t > 0.

Proposition 3.14. Let G be a nilpotent group of step m with Hörmander set
{Xi}k

i=1. Then Kp(t) ≤ KL
p for all t > 0, where Kp(t) is the function defined in

Notation 1.7.

Proof. By definition of L = L(k, m), there exists a unique Lie algebra homomor-
phism Π : L → g such that Π(ei) = Xi. Then Π induces a group homomorphism
π : N → G via the exponential maps,

π = expG ◦Π ◦ exp−1
N .

Again, because N is a simply connected nilpotent Lie group, the exponential map
on L is a global diffeomorphism. Note that π∗ = Π,

L(k,m) Π−−−−→ g

expN

y yexpG

N (k, m) −−−−→
π

G
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and the vector fields X̃i and ẽi are π-related; that is,

ẽα(f ◦ π) = (X̃αf) ◦ π,

for any multi-index α ∈ Λr and f ∈ C∞
c (G). Note that f ◦ π ∈ C∞

b (N ) and has
bounded first order derivatives. Thus, by Proposition 3.6,

|∇Ptf |p(e) = |∇LPt(f ◦ π)|p(eN ) ≤ KL
p Pt|∇L(f ◦ π)|p(eN ) = KL

p Pt|∇f |p(e),

where eN is the identity element of N . Since Kp(t) is the best constant for which

|∇Ptf |p(e) ≤ Kp(t)Pt|∇f |p(e)

holds, the above implies that Kp(t) ≤ KL
p for all t > 0.

This method of lifting the vector fields to a free nilpotent Lie algebra was learned
from [32, 33]. A generalization of this procedure may be found in [27].

Remark 3.15. Note that the above argument is independent of the minimality of
the Hörmander set {Xi}k

i=1. So suppose that the collection {Xi}k
i=1 spans the Lie

algebra g. Since G is a nilpotent Lie group (and thus unimodular) it is then well
known that the operator L =

∑k
i=1 X̃2

i is in fact the Laplace-Beltrami operator on
the Riemannian manifold (G, 〈·, ·〉). Then it is well known that the inequality (Ip)
holds with exponential coefficients:

|∇Ptf |p ≤ epktPt|∇f |p,

where −2k is a lower bound on the Ricci curvature; see for example Theorem 1.1 in
[10]. Proposition 3.14 improves this result by implying that there exists a Kp < ∞
independent of t such that

|∇Ptf |p ≤ KpPt|∇f |p,

for all f ∈ C∞
p (G) and t > 0. This implies the following corollary.

Corollary 3.16. Let G be a nilpotent Lie group of step m and {Xi}k
i=1 ⊂ g such

that {Xi}k
i=1 spans the Lie algebra g. Then, for Kp(t) as in Notation 1.7,

Kp(t) ≤ min{KL
p , epkt},

where KL
p is the best constant so that (Ip) holds on L(k,m) and −2k is a lower

bound on the Ricci curvature associated to the Riemannian metric determined by
L =

∑k
i=1 X̃2

i .

This also gives the following Poincaré inequality for nilpotent Lie groups.

Corollary 3.17. Suppose G is a nilpotent Lie group, and let K2 be a finite constant
for which the inequality (Ip) holds for p = 2. Then the inequality (3.3) holds with
Λ(t) = K2t, for all t > 0.
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Acad. Sci. Paris Sér. I Math. 299 (1984), no. 15, 775–778. MR 86f:60097
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