Abstract

This study examined the effect of physical display size on spatial knowledge of a virtual environment (VE). Previous research by Tan (2004) found that performance for a path integration task in a VE was superior on a large display compared to a small one, even with physical size held constant. This may be because large displays evoke a more egocentric frame of reference than small displays. To test whether the advantages of large displays extended to a navigation transfer task, the present studies examined the effect of display size on transferring knowledge about the spatial layout of a desktop VE to virtual reality (VR). Participants used a joystick to control their movement through a virtual city environment, finding and learning the locations of five targets separated by buildings. After 20 minutes of learning, participants' spatial knowledge was tested in a fully immersive environment by using virtual reality. Participants stood at each target location and pointed to each of the other, unseen targets. In the first study participants learned the VE on either an 18” LCD display or a 112” projected display. Visual angle was not equated. In the second study participants learned the VE on either a 25” or 72” projected display and visual angle was held constant. In both studies we found the average angular pointing error was significantly lower on the large display. Our results suggest that the advantage of a large desktop display for a virtual environment transfers to VR and is not dependent on visual angle.

Introduction

Large displays have also been shown to improve performance on cognitive tasks. Performance for egocentric tasks were found to be superior on a large display compared to a small one, even when the visual angle between the displays was identical (Tan et al., 2004). No differences between small and large displays were found for exocentric tasks (Tan, 2004). Tan has suggested the advantage for large displays may be because they bias participants into developing more egocentric strategies.

Experiment 1: Small Display or Three Projector Display with Unequal Visual Angles

Learning phase

Small display

FOV=22.6°

Three projector display

FOV=110°

Testing phase results

Small Display

Three Projector Display

Discussion

In both experiments 1 and 2, spatial knowledge for the virtual environment was superior when it was learned on the large display. The results from experiment 2 indicate that it is the physical size of the display that matters, not field of view.

For experiment 3, participants had no active control over movement during learning. Instead, they viewed a playback of movement through the city environment. No difference between the small and large display was found.

Large displays may promote a more egocentric spatial awareness. Since participants’ knowledge of the VE was assessed in VR, our findings suggest that learning a computer generated version of a real environment on a large display may transfer to the real world, leading to improved navigation performance.

References


Bigger is Better: Large Visual Displays Improve Spatial Knowledge of a Virtual Environment

Jonathan Z. Bakdash,1 Jason S. Augustyn,2 and Dennis R. Proffitt1

1Department of Psychology, University of Virginia
1U.S. Army Natick Soldier Systems Center

This study examined the effect of physical display size on spatial knowledge of a virtual environment (VE). Previous research by Tan (2004) found that performance for a path integration task in a VE was superior on a large display compared to a small one, even with visual angle held constant. This may be because large displays evoke a more egocentric frame of reference than small displays. To test whether the advantages of large displays extended to a navigation transfer task, the present studies examined the effect of display size on transferring knowledge about the spatial layout of a desktop VE to virtual reality (VR). Participants used a joystick to control their movement through a virtual city environment, finding and learning the locations of five targets separated by buildings. After 20 minutes of learning, participants’ spatial knowledge was tested in a fully immersive environment by using virtual reality. Participants stood at each target location and pointed to each of the other, unseen targets. In the first study participants learned the VE on either an 18” LCD display or a 112” projected display. Visual angle was not equated. In the second study participants learned the VE on either a 25” or 72” projected display and visual angle was held constant. In both studies we found the average angular pointing error was significantly lower on the large display. Our results suggest that the advantage of a large desktop display for a virtual environment transfers to VR and is not dependent on visual angle.

Experiment 2: Small or Large Display with Visual Angle Equated

Learning phase

Small display

FOV=15.8º

Large display

FOV=15.8º

Testing phase results

Small Display

Large Display

Experiment 3: Small or Large Display with Passive Viewing and Visual Angle Equated

Learning phase

Small display

FOV=15.8º

Large display

FOV=15.8º

Testing phase results

Small Display

Large Display

In our current work, we wanted to examine if the benefits of learning a VE on a large display would extend to a complex navigation task and transfer to a fully immersive test environment by using virtual reality (VR).

•Corresponding author. Email: jzb3e@virginia.edu
•This research was supported by NBC Grant 1050023 from DARPA to the third author.