Introduction to Engineering I
Lecture 6

Dimensional Analysis
Scaling
Studio Problems
Dimensional Analysis

- Fundamental Dimensions
 - Length L
 - Time T
 - Mass M
 - Absolute Temperature Θ
 - Charge Q

- Units
 - SI (Metric) Units: m, s, kg, K
 - Non-SI Units: ft, hr, lbm, R, esu

- Dimensions ≠ Units!
Dimensions of Physical Quantities

• Mass
 • Unit is kilogram (kg)
 • Dimension is M

• Length
 • Unit is meter (m)
 • Dimension is L

• Time
 • Unit is seconds (s)
 • Dimension is T

• Charge
 • Unit is coulombs (C)
 • Dimension is Q

• Temperature
 • Unit is Kelvin (K)
 • Dimension is Θ
Dimensions of Physical Quantities

- **Velocity**
 - Unit is m/s or m \cdot s^{-1}
 - Dimension is L\text{T}^{-1}

- **Momentum**
 - Unit is kg \cdot m \cdot s^{-1}
 - Dimension is M\text{L}\text{T}^{-1}

- **Force**
 - Unit is N = kg \cdot m \cdot s^{-2}
 - Dimension is M\text{L}\text{T}^{-2}

- **Energy**
 - Unit is J = N \cdot m = kg \cdot m^2 \cdot s^{-2}
 - Dimension is M\text{L}^2\text{T}^{-2}

- **Pressure**
 - Unit is Pa = N/m^2 = kg \cdot m^{-1} \cdot s^{-2}
 - Dimension is M\text{L}^{-1}\text{T}^{-2}

- **Power**
 - Unit is W = J/s = kg \cdot m^2 \cdot s^{-3}
 - Dimension is M\text{L}^2\text{T}^{-3}

- **Density**
 - Unit is kg/m^3 = kg \cdot m^{-3}
 - Dimension is M\text{L}^{-3}

- **Torque**
 - Unit is N \cdot m = kg \cdot m^2 \cdot s^{-2}
 - Dimension is M\text{L}^2\text{T}^{-2}
Using Dimensional Analysis

• Dimensions on both sides of an equation must match
• Useful in determining functional relationships
• Idea:
 • \(X = f(M, L, T, \text{ etc.}) \)
 • Dimensions of \(X \) = Dimensions of \(f(M, L, T) \)
 • By matching the dimensions, we can determine the form of \(f \)
• \(X \propto T \)
 • Read as "\(X \) is proportional to \(T \)"
 • This means \(X = kT \), where \(k \) is a constant
Example: Force = f(?)

- Plausible variables:
 - Mass
 - Velocity
 - Acceleration

- Unlikely variables
 - Time
 - Temperature

- Hypothesis: Force = f(mass, velocity, acceleration)
- Use dimensional analysis to determine the relationship
Example: Force = f(?)

- Dimensions of variables
 - Force = F; dimensions are MLT\(^{-2}\)
 - Mass = m; dimension is M
 - Velocity = v; dimensions are LT\(^{-1}\)
 - Acceleration = a; dimensions are LT\(^{-2}\)

- Suppose \(F \propto m^\alpha v^\beta a^\gamma \)

- Dimensions must match:

\[
MLT^{-2} = (M)^\alpha (LT^{-1})^\beta (LT^{-2})^\gamma
\]
\[F \propto m^{\alpha} v^{\beta} a^{\gamma} = MLT^{-2} = (M)^{\alpha}(LT^{-1})^{\beta}(LT^{-2})^{\gamma} \]

- Dimensions on each side must match:
 - \(M^1 = M^\alpha \quad \Rightarrow \quad \alpha = 1 \)
 - \(L^1 = L^\beta L^\gamma \quad \Rightarrow \quad \beta + \gamma = 1 \)
 - \(T^{-2} = T^{-\beta} T^{-2\gamma} \quad \Rightarrow \quad \beta + 2\gamma = 2 \)

- Solution: \(\alpha = 1, \beta = 0, \gamma = 1 \)

- \(F \propto m^1 v^0 a^1 = ma \)
Example: Period of Pendulum

• Plausible variables:
 • Mass m
 • Length l
 • Acceleration of gravity g

• Unlikely variables
 • Time
 • Temperature

• Hypothesis: Period = $f(\text{mass, length, acceleration})$
• Use dimensional analysis to determine the relationship
Example: Period of Pendulum

- Dimensions of variables
 - Period = \(t \); dimension is \(T \)
 - Mass = \(m \); dimension is \(M \)
 - Length = \(l \); dimension is \(L \)
 - Acceleration = \(g \); dimensions are \(LT^{-2} \)

- Suppose \(t \propto m^\alpha l^\beta g^\gamma \)

- Dimensions must match:
 \[
 T = (M)^\alpha (L)^\beta (LT^{-2})^\gamma
 \]
\(t \propto m^{\alpha}L^{\beta}g^{\gamma} = T = (M)^{\alpha}(L)^{\beta}(LT^{-2})^{\gamma} \)

- Dimensions on each side must match:
 - \(M^{0} = M^{\alpha} \Rightarrow \alpha = 0 \)
 - \(L^{0} = L^{\beta}L^{\gamma} \Rightarrow \beta + \gamma = 0 \)
 - \(T^{1} = T^{-2\gamma} \Rightarrow -2\gamma = 1 \)

- Solution: \(\alpha = 0, \beta = 1/2, \gamma = -1/2 \)

- \(t \propto m^{0}L^{0.5}g^{-0.5} \)

\[t \propto \sqrt{\frac{l}{g}} \]
Scaling

Objects have a characteristic linear dimension
Scaling – shape is preserved

Surface area $\propto L^2$
Volume $\propto L^3$

Area A
Volume V

$L' = \alpha L$
$A' = \alpha^2 A$
$V' = \alpha^3 V$

The symbol \propto means “proportional to”
Scaling

Area A
Volume V

Area $9A$
Volume $27V$
Scaling

Linear dimensions $\propto L$ (shape is preserved after scaling)
Surface area $\propto L^2$
Volume $\propto L^3$
Importance: some properties \propto area, others are \propto volume

Proportional to Area:
 - Strength
 - Cooling rate

Proportional to Volume:
 - Mass
 - Energy production in combustion/metabolism
Consequences

• One large ice cube take longer to melt than the same mass divided among smaller cubes

• Animals cannot be arbitrarily large
 • If you scale L by 10 \times, bone and muscle strength goes up by 100 \times, but weight goes up by 1000 \times
 • Ratio of mass to strength increases by 10 \times
 • Imagine carrying nine people your size and weight
 • Conversely, insects can carry large loads in comparison to their weight

• Warm-blooded animals cannot be arbitrarily small
 • If you scale L by 0.1 \times, cooling rate (\propto area) goes down by 0.01 \times and ability to heat body (\propto mass) goes down by 0.001 \times
 • This is why small mammals and birds must eat all the time