CHEM 342. Spring 2002. Next PS Previous PS Answers PS#2.doc (Word 97)
Problem Set #2
Note: Relevant Chapters in Mortimer are Chapters 14 and 15. Orthogonality 1. Prove that the functions and are orthogonal . Hint: 2. Give a mathematical definition for the Kronnecker delta . What is the numerical value of the Kronnecker delta when the two eigenfunctions are orthogonal? What is the numerical value of the Kronnecker delta when n and m are the same eigenfunction (i.e. n = m)? In addition to these two values, can the Kronnecker delta be equal to any other numerical values?
Operators 3. Find the result of operating with and on the function . Is f(y) an eigenfunction of or of ?
4. Find the following commutators for any function f(x). (a) (b) Hint: , , , and . 5. Find the result of operating with the operator on the function . What values must the constants have for to be an eigenfunction of ? 6. Find the result of operating with the operator on the function . Is it an eigenfunction? 7. The function is a wellbehaved wave function in the interval . Calculate the normalization constant (A), and the average value of a series of measurements of x (i.e find the expectation value: ).
Expectation Values 8. For the wave function and the operator , give an expression that could be used to calculate the average value obtained from repeated measurements (i.e. show an expression for ).
Particle In a Box 9. Calculate the value of A so that is normalized in the region . Hint:
10. For a particle in a onedimensional box , we used eigenfunctions of the form . Explain why we could not use
11. The groundstate wave function for a particle confined to a onedimensional box of length L is The box is 10.0 nm long. Calculate the probability that the particle is between 4.95 nm and 5.05 nm. Hint: 12. What is the ground state energy (i.e. n = 1) for an electron that is confined to a box which is 0.2 nm wide. [Hint: Planck's constant, h,is J s; the mass of an electron, m_{e}, is kg]
Uncertainty 13. The speed of a certain proton is 4.5 ´ 10^{5} m/s along the xaxis. If the uncertainty in its momentum along the xaxis is 0.010 %, what is the maximum uncertainty in its location along the xaxis (i.e. )?
Tunneling 14. The wave function inside an infinitely long barrier of height V is . Calculate (a) the probability that the particle is inside the barrier; and (b) the average penetration depth of the particle into the barrier (i.e. the expectation value ). Because the barrier is infinitely long, this wave function is valid for . Hint: . PLEASE NOTE

