Main Page
Curriculum Vitae
Research Group
Other MSE Links









OBJECTIVE:            To explore the fundamental physical laws governing electrons in solids, and show how that knowledge can be applied to understanding electronic, optical and magnetic properties.  Students will gain an understanding of how these properties vary between different types of materials, and thus why specific materials are optimal for important technological applications.  It will also be shown how processing issues further define materials choices for specific applications.

TEXT:                        Principles of Electrical Engineering Materials and Devices, S.O. Kasap.


         (75 minute lectures)

Module I: Basic Theory

1.      Classical theory of electronic conduction.  Conductivity, mobility, scattering time, mean free path

2.      Review of basic quantum and wave mechanics:  Schrodinger equation, Heisenberg Uncertainty Principle, traveling wave equation (free particle), group and phase velocities,

3.      Quantum mechanical solutions to configurations relevant to (opto)electronic devices:  Tunneling, quantization

4.      Quantum free electron theory: Density of states, Fermi energy, Fermi function

5.      Electrons in atoms and crystals:  Quantum numbers, band theory of solids – mathematical and conceptual derivations.

6.      Important concepts from the band theory of solids: Brillouin zones, effective mass, density of states in a band, electrons and holes

Module II: Electronic and Magnetic properties of metals

7.      Basic properties:  conductivity, carrier densities, mobility, semi-metals, alloying effects, defects, conventional superconductivity

8.      Thermal and field emission

9.      Magnetism: basic concepts: Diamagnetism, paramagnetism, ferromagnetism, ferrimagnetism, magnetic domains, Curie transitions

10.    Quantum descriptions of magentism: Quantum mechanical treatments of magnetism: electron spin, spin-orbit coupling, Hund’s rules

11.    Magnetic Storage Devices and Other Applications : How a hard drive works.  Giant and colossal magnetoresistance systems.  Super paramagnetic limit, magnetic nanostructures;, magnetic levitation, NMR imaging, magnetic memory

Module III: Electronic properties of semiconductors

12.    Intrinsic semiconductors:  Fermi level, carrier density, bonding, band structures,

13.    Extrinsic semiconductors: Fermi level, carrier concentration, mobility

14.   Semiconductor materials and heterojunctions: Summary of important semiconductor materials, properties and applications, primary dopant materials and solubilities, materials combinations, strain relief mechanisms

15.    Inter-band excitation and recombination processes: direct and indirect gap materials, carrier lifetimes, electronically active traps, recombination velocities

Module IV: Materials interfaces and applications to electronic devices

16.    Metal-metal junctions: Fermi level equalization, contact potential, Seebeck effect, thermocouples

17.    Semiconductor p-n junctions: basic operation, diode equation, capacitance,  ideality factors, switching speed 

18.    Metal – semiconductor junctions: Schottky barriers, Fermi level pinning, Peltier cooling

19.    Field effect transistors:  basic operation, metal-oxide-semiconductor junctions and transistors (MOSFETs)

20.    MOSFETS: materials constraints, scaling laws, limits

Module V: Optical properties of semiconductors and communications systems

21.    Basic theory: absorption, spontaneous and stimulated emission , photo-, cathode- and electro-luminescence, fluorescence, lasing

22.   Semiconductor light emitting diodes and detectors: materials, wavelength-tuning, quantum efficiency

23.    Lasers: semiconductor junction lasers, gas lasers, dye lasers

24.    Optical fibers and telecommunications networks

Module VI: Optical and electronic properties of ceramics and polymers

25.    Dielectric properties of materials: fundamental theory

26.         Ferroelectrics, piezoelectrics, High Tc superconductors: materials and applications

27.    Basic mechanisms and applications in polymers: electronic structure, doping,  

   optical emission and absorption, organic light emitting diodes, light-sensitive polymers,

Module IX:  Overview of next generation technologies

28.    Quantum cellular automata, bioelectronics, quantum computers, optical  

               computing, magnetic nanostructures