Complete List of Published Work in Pubmed


2017

  1. BDNF Mediated Neuroprotection in Optic Neuropathy.

        Liu, X.

        eNeuro. 2017 (Featured article).

  1. Overexpression of Brain-Derived Neurotrophic Factor Protects Large Retinal Ganglion Cells After Optic Nerve Crush in Mice.

        Feng, L, Puang, Z, Chen, H, Liang, P, Troy, JB, and Liu, X.

        eNeuro. 2017 Jan 17;4(1) e0331-16. pii: ENEURO.0331-16.2016.

  1. Different functional susceptibilities of mouse retinal ganglion cell subtypes to optic nerve crush injury.

        Puyang, Z, Gong, H, Hea, S, Troy, JB, Liu, X and Liang, P.

        Exp Eye Res. 2017 Sep;162:97-103.

  1. Retinal origin of direction selectivity in the superior colliculus.

        Shi X, Barchini J, Ledesma HA, Koren D, Jin Y, Liu X, Wei W, Cang J.

        Nat Neurosci. 2017 Apr; 20(4):550-558.

  1. Angiopoietin-1 is required for Schlemm’s canal development in mice and humans.

        Thomson, BR, et al.

        J Clinical Invest. (in press)



2016

  1. Long-Term Protection of Retinal Ganglion Cells and Visual Function by Brain-Derived Neurotrophic Factor in Mice With Ocular  Hypertension.

        Feng L, Chen H, Yi J, Troy JB, Zhang HF, Liu X.

        Invest Ophthalmol Vis. 2016 Jul 1;57(8):3793-802.

  1. Retinal Ganglion Cell Loss is Delayed Following Optic Nerve Crush in  NLRP3 Knockout Mice.

        Puyang Z, Feng L, Chen H, Liang P, Troy JB, Liu X.

        Sci Rep. 2016 Feb 19;6:20998. doi: 10.1038/srep20998.

  1. NLRP3 inflammasome in retinal ganglion cell loss in optic neuropathy.

        Feng L and Liu X.

        Neural Regen Res. 2016 Jul;11(7):1077-8. 

  1. Optical Detection of Early Damage in Retinal Ganglion  Cells in a Mouse Model of Partial OpticNerve Crush Injury.

        Yi J, Puyang Z, Feng L, Duan L, Liang P, Backman V, Liu X, Zhang HF.

        Invest Ophthalmol Vis Sci. 2016 Oct 1;57(13):5665-5671.

  1. Mutations in the Angiopoietin receptor TEK cause primary congenital glaucoma with variable expressivity.

        Souma, T, et al.

        J Clin Invest. 2016 Jul 1;126(7):2575-87.


2015

  1. Neurons in the Most Superficial Lamina of the Mouse Superior Colliculus Are Highly Selective for Stimulus Direction.

        Inayat S*, Barchini J*, Chen H, Feng L, Liu X, Cang J. (*: co-first authors)

        J Neurosci. 2015, 35(20):7992-8003.

  1. Progressive degeneration of retinal and superior collicular functions in mice with sustained ocular hypertension.

        Chen H*, Zhao Y*, Liu M*, Feng L, Puyang Z, Yi J, Liang P, Zhang HF, Cang J, Troy JB, Liu X. (*: co-first authors)

        Invest Ophthalmol Vis Sci. 2015, 56(3):1971-84.

  1. Subtype-dependent Morphological and Functional Degeneration of Retinal Ganglion Cells in Mouse Models of Experimental Glaucoma.

        Puyang Z, Chen H, Liu X.

        Journal of Nature and Science. 2015;1(5):e103. (Review)


2014

  1. Subtype-dependent postnatal development of direction- and orientation-selective retinal ganglion cells in mice.

        Chen H, Liu X*, Tian N.

        J Neurophysiol. 2014 Nov 1;112(9):2092-101. (*: corresponding author)

  1. A lymphatic defect causes ocular hypertension and glaucoma in mice.

  2. Thomson BR, Heinen S, Jeansson M, Ghosh AK, Fatima A, Sung HK, Onay T, Chen H, Yamaguchi S, Economides AN, Flenniken A,    Gale NW, Hong YK, Fawzi A, Liu X, Kume T, Quaggin SE.

        J Clin Invest. 2014 Oct;124(10):4320-4.

  1. Genetic disruption of the On visual pathway affects cortical orientation selectivity and contrast sensitivity in mice.

        Sarnaik R, Chen H, Liu X, Cang J.

        J Neurophysiol. 2014 Jun 1;111(11):2276-86.


2013

  1. Environmental Enrichment Rescues Binocular Matching of Orientation Preference in Mice that Have a Precocious Critical Period

        Wang BS, Feng L, Liu M, Liu X, and Cang J.

  1.     Neuron. 2013, 80(1): 198-209.

  2. Orientation-selective Responses in the Mouse Lateral Geniculate Nucleus.

        Zhao X, Chen H, Liu X, Cang J.

  1.     J Neurosci. 2013, 33(31):12751-63.

  2. Sustained ocular hypertension induces dendritic degeneration of mouse retinal ganglion cells that depends on cell type and location.

        Feng L, Zhao Y, Yoshida M, Chen H, Yang JF, Kim TS, Cang J, Troy JB, Liu X.

        Invest Ophthalmol Vis Sci. 2013 Feb 7;54(2):1106-17.

  1. A Laser-induced Mouse Model of Chronic Ocular Hypertension to Characterize Visual Defects. Journal of Visualized Experiments.

        Feng L, Chen H, Suyeoka G, Liu X.

        J Vis Exp. 2013 Aug 14;78:e50440, doi:10.3791/50440.

  1. Multimodal photoacoustic ophthalmoscopy in mouse.

        Song W, Wei Q, Feng L, Sarthy V,  Jiao S, Liu X, and Zhang ZF.

        J Biophotonics. 2013 Jun;6(6-7):505-12.


2011

  1. Overexpression of Neurotrophin-3 Stimulates a Second Wave of Dopaminergic Amacrine Cell Genesis after Birth in the Mouse Retina.

  2.     Yoshida Y*, Feng L*, Grimbert F, Rangarajan KV, Buggele W, Copenhagen DR, Cang J, and Liu X. (*: co-first authors)

  3.     J Neurosci. 2011, 31(35):12663-73.

  4. Detection of Visual Deficits in Aging DBA/2J Mice by Two Behavioral Assays.

  5.     Rangarajan KV*, Lawhn-Heath C*, Feng L, Kim TS, Cang J, and Liu X. (*: equal contribution)

  6.     Curr Eye Res. 2011, 36(5):481-91.


2010

  1. Visual receptive field properties of neurons in the superficial superior colliculus of the mouse.

  2.     Wang L, Sarnaik R, Rangarajan K, Liu X, and Cang J.

  3.     J Neurosci. 2010, 30(49):16573-84.

  4. Non-centered spike-triggered covariance analysis reveals neurotrophin-3 as a developmental regulator of receptive field properties of ON-OFF retinal ganglion cells.

  5.     Cantrell DR, Cang J, Troy JB, Liu X.

  6.     PLoS Comput Biol. 2010, 6(10):e1000967.


2009

  1. Direction-Specific Disruption of Subcortical Visual Behavior and Receptive Fields in Mice Lacking the Beta2 Subunit of Nicotinic Acetylcholine Receptor.

  2.     Wang L, Rangarajan KV, Lawhn-Heath CA, Sarnaik R, Wang B-S, Liu X, Cang J.

  3.     J Neurosci. 2009, 29(41):12909-18.

  4. Regulation of neonatal development of retinal ganglion cell dendrites by neurotrophin-3 overexpression.

  5.     Liu X, Robinson ML, Schreiber AM, Wu V, Lavail MM, Cang J, Copenhagen DR.

  6.     J Comp Neurol. 2009, 514(5):449-58.


2008

  1. Selective disruption of one cartesian axis of cortical maps and receptive fields by deficiency in ephrin-As and structured activity.

  2.     Cang J*, Niell CM*, Liu X, Pfeiffenberger C, Feldheim DA and Stryker MP. (*: co-first authors)

  3.     Neuron. 2008, 57(4):511–523.


2007

  1. Brain-derived neurotrophic factor and TrkB modulate visual experience-dependent refinement of neuronal pathways in retina.

        Liu X, Grishanin R, Tolwani RJ, Renteria R, Reichardt LF, and Copenhagen DR.

        J Neurosci. 2007 Jul 4;27(27):7256-6.


2005

  1. Development of precise maps in visual cortex requires patterned spontaneous activity in the retina.

  2.     Cang J, Rentería RC, Kaneko M, Liu X, Copenhagen DR and Stryker MP.

  3.     Neuron. 2005, 48(5): 797-809.


2002

  1. Circadian regulation of nocturnin transcription by phosphorylated CREB in Xenopus retinal photoreceptor cells.

        Liu X and Green CB.

        Mol Cell Biol. 2002 Nov;22:7501-7511.


2001

  1. A novel promoter element, PCE II, directs photo-receptor-specific expression of nocturnin in Xenopus laevis.

        Liu X and Green CB.

        J Biol Chem. 2001 May 4;276:15146-15154.

Selected Papers:

Publications