Sources Cited

1. Kroll, K. and E. Amaya, Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development, 1996. 122(10): p. 3173-3183.

2. Amaya, E. and K.K. Kroll, A method for generating transgenic frog embryos, in Methods in Molecular Biology, P. Sharpe and I. Mason, Editors. 1996, Humana Press: Totowa, N.J.

3. Gerhart, J., et al., Localization and induction in early development of Xenopus. Phil. Trans. R. Soc. Lond. B, 1984. 307: p. 319-330.

4. Keller, R., Early embryonic development of Xenopus laevis. Methods Cell Biol, 1991. 36: p. 61-113.

5. Winklbauer, R., et al., Cell interaction and its role in mesoderm cell migration during Xenopus gastrulation. Dev. Dynam., 1992. 195: p. 290-302.

6. Lallier, T., C. Whittaker, and D. DeSimone,  Integrin a6 is required for early nervous system development in Xenopus laevis. Development, 1996. 122.

7. Smith, J.C., A mesoderm inducing factor is produced by a Xenopus cell line. Development, 1987. 99: p. 3-14.

8. Smith, W.C. and R.M. Harland, Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center. Cell, 1991. 67: p. 753-765.

9. Smith, W.C. and R.M. Harland, Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell, 1992. 70(5): p. 829-40.

10. Lemaire, P., N. Garret, and J.B. Gurdon, Expression cloning of siamois, a xenopus homeobox gene expressed in dorsal vegetal cells of blastulae and able to induce a complete secondary axis. Cell, 1995. 81: p. 85-94.

11. Lustig, K.D., et al., Expression cloning of a Xenopus T-related gene (Xombi) involved in mesodermal patterning and blastopore lip formation. Development, 1996. 122(12): p. 4001-12.

12. Smith, J.C., M. Yaqoob, and K. Symes, Purification, partial characterization and biological effects of the XTC mesoderm-inducing factor. Development, 1988. 103(3): p. 591-600.

13. Green, J.B., et al., The biological effects of XTC-MIF: quantitative comparison with Xenopus bFGF. Development, 1990. 108(1): p. 173-83.

14. Thomsen, G.H. and D.A. Melton, Processed Vg1 protein is an axial mesoderm inducer in Xenopus. Cell, 1993. 74: p. 433-441.

15. Koster, M., et al., Bone morphogenetic protein 4 (BMP-4), a member of the TGF-beta family, in early embryos of Xenopus laevis: analysis of mesoderm inducing activity. Mech Dev, 1991. 33(3): p. 191-9.

16. Heasman, J., N. Torpey, and C. Wylie, The role of intermediate filaments in early Xenopus development studied by antisense depletion of maternal mRNA. Development - Supplement, 1992: p. 119-25.

17. Wright, C.V., et al., Interference with function of a homeobox gene in Xenopus embryos produces malformations of the anterior spinal cord. Cell, 1989. 59(1): p. 81-93.

18. Amaya, E., T.J. Musci, and M.W. Kirschner, Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell, 1991. 66(2): p. 257-70.

19. Herskowitz, I., Functional inactivation of genes by dominant negative mutations. Nature, 1987. 329: p. 219-222.

20. Hemmati-Brivanlou, A. and D.A. Melton, A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos [see comments]. Nature, 1992. 359(6396): p. 609-14.

21. Graff, J.M., et al., Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals overide dorsal signals in vivo. Cell, 1994. 79: p. 169-179.

22. Vassalli, A., et al., Activin/inhibin beta B subunit gene disruption leads to defects in eyelid development and female reproduction. Genes Dev, 1994. 8(4): p. 414-27.

23. Grieder, N.C., et al., Schnurri is required for Drosophila Dpp signaling and encodes a zinc finger protein similar to the mammalian transcription factor PRDII-BF1. Cell, 1995. 81(5): p. 791-800.

24. de Sa, R. and D. Hillis, Phylogenetic relationships of the pipid frogs Xenopus and Silurana: and Integration of Ribosomal DNA and morphology. Molecular Biology of Evolution, 1990. 7(4): p. 365-376.

25. Burki, E., The expression of creatine kinase isozymes in Xenopus tropicalis, Xenopus laevis laevis, and their viable hybrid. Biochemical Genetics, 1985. 23(1-2): p. 73-88.

26. Graf, J.D. and H.R. Kobel, Genetics of Xenopus laevis, in Methods in Cell Biology, B. Kay and H.B. Peng, Editors. 1991, Academic Press: San Diego, Ca.

27. Tinsley, R. and H.R. Kobel, eds. The Biology of Xenopus. . 1996, Clarendon Press: Oxford.

28. Hogan, B., et al., Manipulating the mouse embryo: A laboratory manual (second edition). 1994: Cold Spring Harbor Laboratory Press.

29. Kimmel, C.B., Genetics and early development of the zebrafish. TIG, 1989. 4: p. 284-288.

30. Haffter, P., et al., The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development, 1996. 123: p. 1-36.

31. Driever, W., et al., A genetic screen for mutations affecting embryogenesis in zebrafish. Development, 1996. 123: p. 37-46.

32. Allende, M.L., et al., Insertional mutagenesis in zebrafish identifies two novel genes, pescadillo and dead eye, essential for embryonic development [see comments]. Genes & Development, 1996. 10(24): p. 3141-55.

33. Kimmel, C.B., R.M. Warga, and T.F. Schilling, Origin and organization of the zebrafish fate map. Development, 1990. 108(4): p. 581-94.

34. Shih, J. and S. Fraser, Distribution of tissue progenitorswithin the shield region of the zebrafish gastrula. Development, 1995. 121: p. 2755-2765.

35. Winklbauer, R. and M. Nagel, Directional mesodermal cell  migration in the Xenopus gastrula. Developmental Biology, 1991. 148: p. 573-589.

36. Winklbauer, R., Mesodermal cell migration during Xenopus gastrulation. Develop. Biol., 1990. 142: p. 155-168.

37. Shih, J. and S. Fraser, Characterizing the zebrafish organizer: microsurgical analysis at the early shield stage. Development, 1996. 122: p. 1313-1322.

38. Ho, R. and C. Kimmel, Commitment of cell fate in the early zebrafish embryo. Science, 1993. 261: p. 109-111.

39. Trinkaus, J.P., A study of the mechanism of epiboly in the egg of Fundulus heteroclitus.  J. Exp. Zool., 1951. 118: p. 269-320.

40. Betchaku, T. and J.P. Trinkaus, Contact relations, surface activity, and cortical microfilaments of marginal zells of the enveloping layer and of the yolk syncytial and yolk cytoplasmic layers of Fundulus before and during epiboly. J. Exp. Zoo., 1978. 206: p. 381-426.

41. Strahle, U. and S. Jesuthasan, Ultraviolet irradiation impairs epiboly in zebrafish embyros: evidence for a microtubule-dependent mechanism of epiboly. Development, 1993. 119: p. 909-919.

42. Schoenwolf, G.C. and J.L. Smith,  Mechanisms of neurulation: Traditional viewpoint and recent advances. Development, 1990. 109: p. 243-270.

43. Schoenwolf, G., V. Garcia Martinez, and M.S. Dias, Mesoderm movement and fate during avian gastrulation and neurulation. Dev. Dyn., 1992. 193: p. 235-248.

44. Smith, J.L., K.M. Gesteland, and G.C. Schoenwolf, Prospective fate map of the mouse primitive streak at 7.5 days of gestation. Dev. Dyn., 1994. 201: p. 279-289.

45. Keller, R. and M. Danilchik, Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development, 1988. 103(1): p. 193-209.

46. Kintner, C., Cadherins and the morphogenesis of epithelial tissues in Xenopus embryos. Cold Spring Harb Symp Quant Biol, 1992. 57: p. 335-44.

47. Keller, R., J. Shih, and A. Sater, The cellular basis of the convergence and extension of the Xenopus neural plate. Develop. Dynamics, 1992. 193: p. 199-217.

48. Keller, R. and S. Jansa, Xenopus Gastrulation without a blastocoel roof. Dev Dyn, 1992. 195(3): p. 162-76.

49. Doniach, T., Induction of anteroposterior neural pattern in Xenopus by planar signals. Dev Suppl, 1992: p. 183-93.

50. Laale, H.W., Fish embryo culture: observations on axial cord differentiation in presomitic isolates of the zebrafish Brachdanio rerio Hamilton-Buchanan. Can. J. Zool., 1982. 60: p. 1710-1721.

51. Sagerstrom, C.G., Y. Grinbalt, and H. Sive, Anteroposterior patterning in the zebrafish, Danio rerio: an explant assay reveals inductive and suppressive cell interactions. Development, 1996. 122(6): p. 1873-83.

52. Kimmel, C., R. Warga, and D. Kane, Cell cycles and clonal strings during formation of the zebrafish central nervous system. Development, 1994. 120: p. 265-276.

53. Copp, A.J.,  Genetic models of mammalina neural tube defects. Ciba Found Symp., 1994. 181: p. 118-134.

54. St-Jacques, B. and A.P. McMahon, Early mouse development: lessons from gene targeting. Current Opinion in Genetics & Development, 1996. 6(4): p. 439-44.

55. Gurdon, J.B., R.A. Laskey, and O.R. Reeves, The developmental capacity of nuclei transplanted from keratinized skin cells of adult frogs. Journal of Embryology & Experimental Morphology, 1975. 34(1): p. 93-112.

56. Postlethwait, J.H., et al., A genetic linkage map for the zebrafish. Science, 1994. 264(5159): p. 699-703.

57. Postlethwait, J.H. and W.S. Talbot, Zebrafish genomics: from mutants to genes. Trends in Genetics, 1997. 13(May): p. 183-190.

58. Wurst, W., et al., A large-scale gene-trap screen for insertional mutations in developmentally regulated genes in mice. Genetics, 1995. 139(2): p. 889-99.

59. Wu, M. and J. Gerhart, Raising Xenopus in the laboratory. Methods Cell Biol, 1991. 36: p. 3-18.

60. Westerfield, M., The Zebrafish Book. 2.1 ed. 1994, Eugene, OR: Univiversity of Oregon Press.

61. Keller, R. and J. Shih, Mediolateral intercalation of mesodermal cells in the Xenopus laevis gastrula, in Formation and Differentiation of the Early Embryonic Mesoderm, J. Lash and R. Bellairs, Editors. 1992, Plenum Press: New York. p. in press.

62. Keller, R., J. Shih, and C. Domingo, The patterning and functioning of protrusive activity during convergence and extension of the Xenopus organiser. Dev Suppl, 1992: p. 81-91JC  - A8Z.

63. Keller, R., et al., Planar induction of convergence and extension of the neural plate by the organizer of Xenopus. Dev Dyn, 1992. 193(3): p. 218-34.

64. Shih, J. and R. Keller, Cell motility driving mediolateral intercalation in explants of Xenopus laevis. Development, 1992. 116(4): p. 901-14.

65. Shih, J. and R. Keller, Patterns of cell motility in the organizer and dorsal mesoderm of Xenopus laevis. Development, 1992. 116(4): p. 915-30.

66. Domingo, C. and R. Keller, Induction of notochord cell intercalation behavior and differentiation by progressive signals in the gastrula of Xenopus laevis. Development, 1995. 121: p. 3311-3321.

67. Moore, S., R. Keller, and M. Koehl, The dorsal involuting marginal zone stiffens anisotropically during its convergent extension in the gastrula of Xenopus laevis. Development, 1995. 121: p. 3131-3140.

68. Henry, J.J. and R.M. Grainger, Inductive interactions in the spatial and temporal restriction of lens-forming potential in embryonic ectoderm of Xenopus laevis. Dev Biol, 1987. 124(1): p. 200-14.

69. Servetnick, M. and R.M. Grainger, Changes in neural and lens competence in Xenopus ectoderm: evidence for an autonomous developmental timer. Development, 1991. 112(1): p. 177-88.

70. Hemmati-Brivanlou, A. and R.M. Harland, Expression of an engrailed-related protein is induced in the anterior neural ectoderm of early Xenopus embryos. Development, 1989. 106: p. 611-617.

71. Smith, J.C., et al., Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell, 1991. 67(1): p. 79-87.

72. Hirsch, N. and W.A. Harris, Xenopus Pax-6 and retinal development. Journal of Neurobiology, 1997. 32(1): p. 45-61.

73. Smolich, B.D., et al., Characterization of Xenopus laevis gamma-crystallin-encoding genes. Gene, 1993. 128(2): p. 189-95.

74. Krotoski, D.M., D.C. Reinschmidt, and R. Tompkins, Developmental mutants isolated from wild-caught Xenopus laevis by gynogenesis and inbreeding. Journal of Experimental Zoology, 1985. 233(3): p. 443-9.

75. Reinschmidt, D.C., et al., Production of tetraploid and homozygous diploid amphibians by supression of first cleavage. Journal of Experimental Zoology, 1979. 210: p. 137-143.

76. Tompkins, R., Triploid and gynogenetic diploid xenopus laevis. Journal of Experimental Zoology, 1978. 203: p. 251-256.

77. Tompkins, R. and D. Reinschmidt, Experimentally induced homozygosity in Xenopus laevis. Methods in Cell Biology, 1991. 36: p. 35-44.

78. Dasgupta, S., Induction of triploidy by hydrostatic pressure in the leopard frog, rana pipiens. Journal of Experimental Zoology, 1962. 151: p. 105-116.

79. Smith, J.C. and J.R. Tata, Xenopus cell lines. Methods Cell Biol, 1991. 36: p. 635-54.

80. Hey, D., A report on the culture of the South African clawed frog Xenopus laevis (Daudin)
at the Jonkershoek inland fish hatchery. Transactions of the Research Society of South Africa, 1949. 32: p. 45-54.

81. McCoid, M.J. and T.H. Fritts, Notes on the diet of a feral population of Xenopus laevis in California. Southwestern Nature, 1980. 25: p. 272-275.

82. Wallace, R.A., D.W. Jared, and B.L. Nelson, Protein incorporation by isolated amphibian oocytes. I. Preliminary studies. Journal of Experimental Zoology, 1970. 175(3): p. 259-69.

83. Callen, J.C., N. Dennebuoy, and J.C. Mounolou, Early onset of a large pool of previtellogenic oocytes and cyclic escape by vitelogenesis: the pattern of ovarian activity of Xenopus laevis females and its physiological consequences. Reproductive and Nutritional Development, 1986. 26: p. 13-30.

84. Denver, R.J., Acceleration of anuran amphibian metamorphosis by corticotropin-releasing hormone-like peptides. General & Comparative Endocrinology, 1993. 91(1): p. 38-51.

85. Ridley, M., Evolution. 1996, Cambridge, Mass.: Blackwell Science.

86. Colombelli, B., C.H. Thiebaud, and W.P. Muller, Production of WW superfemales by diploid gynogenesis in Xenopus laevis. Mol. Gen. Genet., 1984. 194: p. 57-59.

87. Thiebaud, C.H., B. Colombelli, and W.P. Muller, Diploid gynogenesis in Xenopus laevis and the localization with respect to the centromere of the gene for periodic albinism ap. Journal of Embryology & Experimental Morphology, 1984. 83: p. 33-42.

88. Reinschmidt, D., et al., Gene-centromere mapping in Xenopus laevis. Journal of Heredity, 1985. 76(5): p. 345-7.

89. Watabe, T., et al., Molecular mechanisms of Spemann's organizer formation: conserved growth factor synergy between Xenopus and mouse. Genes & Development, 1995. 9(24): p. 3038-50.

90. Zernicka-Goetz, M., et al., An indelible lineage marker for Xenopus using a mutated green fluorescent protein. Development, 1996. 122(12): p. 3719-24.

91. Siegal, M.L. and D.L. Hartl, Transgene Coplacement and high efficiency site-specific recombination with the Cre/loxP system in Drosophila. Genetics, 1996. 144(2): p. 715-26.

92. St-Onge, L., P.A. Furth, and P. Gruss, Temporal control of the Cre recombinase in transgenic mice by a tetracycline responsive promoter. Nucleic Acids Research, 1996. 24(19): p. 3875-7.

93. Furth, P.A., et al., Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proceedings of the National Academy of Sciences of the United States of America, 1994. 91(20): p. 9302-6.

94. Xu, L., W. Schaffner, and D. Rungger, Transcriptional activation by recombinant GAL4-VP16 in the Xenopus oocyte. Nucleic Acids Research, 1993. 21(11): p. 2775.

95. Almouzni, G. and A.P. Wolffe, Replication-coupled chromatin assembly is required for the repression of basal transcription in vivo. Genes & Development, 1993. 7(10): p. 2033-47.

96. Kolm, P. and H. Sive, Efficient Hormone-Inducible Protein Function in Xenopus laevis.
Developmental Biology, 1995. 171(1): p. 267-272.

97. No, D., T. Yao, and R. Evans, Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proceedings of the National Academy of Sciences, 1996. 93(8): p. 3346-3351.

98. Brun, R., Bilateral eye formation in the eyeless mutant mexican salamander following unilateral, partial excision of neural fold tissues: a quantitative study. Journal of experimental zoology, 1993. 265: p. 541-548.

99. Halder, G., P. Callaerts, and W.J. Gehring, Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila [see comments]. Science, 1995. 267(5205): p. 1788-92.

100. Grainger, R.M., New Perspectives on Embryonic Lens Induction. Seminars in Cell and Developmental Biology, 1996. 7: p. 149-155.

101. Conlon, F.L., et al., Inhibition of Xbra transcription activation causes defects in mesodermal patterning and reveals autoregulation of Xbra in dorsal mesoderm. Development, 1996. 122: p. 2427-35.

102. Hill, R.E., et al., Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature, 1991. 354(6354): p. 522-5.

103. Spemann, H., Uber die determination der ersten organanlagen des amphibienembryo I-VI. Arch. f. Entw. Mech., 1918. 43: p. 448-555.

104. Wilson, P.A., G. Oster, and R. Keller, Cell rearrangement and segmentation in Xenopus: direct observation of cultured explants. Development, 1989. 105(1): p. 155-66.

105. Zimmerman, L., et al., Independent Regulatory Elements in the Nestin Gene Direct Transgene Expression to Neural Stem Cells of Muscle Precursors. Neuron, 1994. 12(1): p. 11-24.

106. Smith, W.C., et al., A nodal-related gene defines a physical and functional domain within the Spemann organizer. Cell, 1995. 82: p. 37-46.

107. Vodicka, M.A. and J.C. Gerhart, Blastomere derivation and domains of gene expression in the Spemann Organizer of Xenopus laevis. Development, 1995. 121(11): p. 3505-18.

108. Cvekl, A. and J. Piatigorsky, Lens development and crystallin gene expression: many roles for Pax-6. Bioessays, 1996. 18(8): p. 621-30.

109. Brakenhoff, R.H., et al., Transgenic Xenopus laevis tadpoles: a transient in vivo model system for the manipulation of lens function and lens development. Nucleic Acids Research,
1991. 19(6): p. 1279-84.

110. Zimmerman, L.B., J.M. De Jesus-Escobar, and R.M. Harland, The Spemann Organizer signal Noggin Binds and Inactivates Bone Morphogenetic Protein-4. Cell, 1996. 86: p. 599-606.

111. Holley, S.A., et al., The Xenopus dorsalizing factor noggin ventralizes Drosophila  embryos by blocking dpp signaling upstream of receptor activation. 1996.

112. Smith, W.C., et al., Secreted noggin protein mimics the Spemann organizer in dorsalizing Xenopus mesoderm. Nature, 1993. 361(6412): p. 547-9.

113. Leyns, L., et al., Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell, 1997. 88(6): p. 747-56.

114. Wang, S., et al., Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell, 1997. 88(6): p. 757-66.

115. Gerhart, J., T. Doniach, and R. Stewart, Organizing the Xenopus organizer. Gastrulation, Keller R.E. ed, Plenum Press New York, 1991: p. 57-77.

116. Sive, H., R.M. Grainger, and R. Harland, eds. Early Development of Xenopus laevis: Course Manual Cold Spring Harbor Xenopus. 5th ed. . 1997, Cold Spring Harbor Press: Cold Spring Harbor.

117. Sambrook, J., E.F. Fritsch, and T. Maniatis, Molecular Cloning:  A Laboratory Manual. 2nd ed ed. 1989, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.

118. Current Protocols in Molecular Biology, ed. F.M. Ausubel. 1995, New York: Wiley.

119. Ferreiro, B., et al., XASH genes promote neurogenesis in Xenopus embryos. Development, 1994. 120(12): p. 3649-55.

120. Keller, R.E., An experimental analysis of the role of bottle cells and the deep marginal zone in gastrulation of Xenopus laevis. J Exp Zool, 1981. 216(1): p. 81-101.

121. Malicki, J., et al., Mutations affecting development of the zebrafish retina. Development, 1996. 123: p. 263-273.

122. Graw, J., Genetic aspects of embryonic eye development in vertebrates. Developmental Genetics, 1996. 18(3): p. 181-97.

123. Baker, J.C. and R.M. Harland, A novel mesoderm inducer, Madr2, functions in the activin signal transduction pathway. Genes and Development, 1996. 10(15): p. 1880-1889.

124. Nusslein-Volhard, C. and D. St. Johntson, The origin of pattern and polarity in the drosophila embryo. Cell, 1992. 68: p. 201-220.

125. Vaulont, S., S. Daines, and M. Evans, Disruption of the adenosine deaminase (ADA) gene using a dicistronic promoterless construct: production of an ADA-deficient homozygote ES cell line. Transgenic Research, 1995. 4(4): p. 247-55.

126. Burns, J.C., et al., Retrovirol gene transfer in Xenopus cell lines and embryos. In Vitro Cellular & Developmental Biology. Animal, 1996. 32(2): p. 78-84.

127. Gurdon, J.B., Nuclear transplantation in eggs and oocytes. J Cell Sci Suppl, 1986. 4(287): p. 287-318.

128. Kobel, H.R., R.B. Brun, and M. Fischberg, Nuclear transplantation with melanophores, ciliated epidermal cells, and the established cell-line A-8 in Xenopus laevis. Journal of Embryology & Experimental Morphology, 1973. 29(3): p. 539-47.

129. Campbell, K.H., et al., Sheep cloned by nuclear transfer from a cultured cell line [see comments]. Nature, 1996. 380(6569): p. 64-6.

130. Kroll, K.L. and J.C. Gerhart, Transgenic X. laevis embryos from eggs transplanted with nuclei of transfected cultured cells. Science, 1994. 266(5185): p. 650-3.

131. von Beroldingen, C.H., The developmental potential of synchronized amphibian cell nuclei. Developmental Biology, 1981. 81(1): p. 115-26.

132. King, T.J. and R. Briggs, Cold Spring Harbor Symp. Quant. Biol., 1956. 21: p. 271-290.

133. DiBerardino, M.A. and N.J. Hoffner, Gene reactivation in erythrocytes: nuclear
transplantation in oocytes and eggs of Rana. Science, 1983. 219(4586): p. 862-4.

134. Gurdon, J.B., Methods for nuclear transplantation in amphibia. Methods in Cell Biology, 1977. 16: p. 125-39.

135. Rafferty, K.A., Mass culture of amphibian cells: Methods and observations concerning stability of cell type, in Biology of Amphibian Tumors, M. Mizell, Editor. 1969, Springer-Verlag: Berlin. p. 52-81.

136. Pudney, M., M.G.R. Varma, and C.J. Leake, Establishment of a cell line XTC-2 from the South African claw toed, Xenopus laevis. Experientia, 1973. 29: p. 466-467.