A Differential Equations Model for the Ovarian Hormone Cycle

Boker, S. M., Neale, M. C. & Klump, K. L. (in press) A Differential Equations Model for the Ovarian Hormone Cycle. In Handbook of Relational Developmental Systems: Emerging Methods and Concepts, P. C. Molenaar, R. Lerner, & K. Newell (Eds). New York: John Wiley & Sons

Dynamical systems models of behavior and regulation have become increasingly popular due to the promise that within-person mechanisms can be modeled and explained. However, it can be difficult to construct differential equation models of regulatory dynamics which test specific theoretically interesting mechanisms. The current chapter uses the example of ovarian hormone regulation and develops a model step by step in order for the model to be able to capture features of observed hormone levels as well as to link parameters of the model to biological mechanisms. Ovarian hormones regulate the monthly female reproductive cycle and have been implicated as having effects on affective states and eating behavior. The three major hormones in this system are estrogen, progesterone, and lutenizing hormone. These hormones are coupled together as a regulatory system. Estrogen level is associated with the release of lutenizing hormone by the hypothalamus. Lutenizing hormone triggers ovulation and the transformation of the dominant follicle into the corpus luteus which in turn produces progesterone. A differential equations model is developed that is biologically plausible and produces nonlinear cycling similar to that seen in a large ongoing daily-measure study of ovarian hormones and eating behavior.

The manuscript of this article accepted for publication can be requested as a pdf file from the first author: Steve Boker.

Tags: , ,

Leave a Reply

You must be logged in to post a comment.