Posts Tagged ‘Ovarian hormones’

The Interactive Effects of Estrogen and Progesterone on Changes in Binge Eating Across the Menstrual Cycle

Thursday, May 23rd, 2013

Klump, K. L., Keel, P. K., Racine, S., Burt, S. A., Sisk, C. L., Neale, M., Boker, S. M. & Hu, J. Y. (2013) The Interactive effects of Estrogen and Progesterone on Changes in Binge Eating Across the Menstrual Cycle. Journal of Abnormal Psychology, 122:1, 131–137.

Studies suggest that within-person changes in estrogen and progesterone predict changes in binge eating across the menstrual cycle. However, samples have been extremely small (maximum N = 9), and analyses have not examined the interactive effects of hormones that are critical for changes in food intake in animals. The aims of the current study were to examine ovarian hormone interactions in the prediction of within-subject changes in emotional eating in the largest sample of women to date (N = 196). Participants provided daily ratings of emotional eating and saliva samples for hormone measurement for 45 consecutive days. Results confirmed that changes in ovarian hormones predict changes in emotional eating across the menstrual cycle, with a significant estradiol x progesterone interaction. Emotional eating scores were highest during the midluteal phase, when progesterone peaks and estradiol demonstrates a secondary peak. Findings extend previous work by highlighting significant interactions between estrogen and progesterone that explain midluteal increases in emotional eating. Future work should explore mechanisms (e.g., gene–hormone interactions) that contribute to both within- and between- subjects differences in emotional eating.

The full text of this article can be downloaded from APA Psycnet as a PDF.

A Differential Equations Model for the Ovarian Hormone Cycle

Monday, December 17th, 2012

Boker, S. M., Neale, M. C. & Klump, K. L. (in press) A Differential Equations Model for the Ovarian Hormone Cycle. In Handbook of Relational Developmental Systems: Emerging Methods and Concepts, P. C. Molenaar, R. Lerner, & K. Newell (Eds). New York: John Wiley & Sons

Dynamical systems models of behavior and regulation have become increasingly popular due to the promise that within-person mechanisms can be modeled and explained. However, it can be difficult to construct differential equation models of regulatory dynamics which test specific theoretically interesting mechanisms. The current chapter uses the example of ovarian hormone regulation and develops a model step by step in order for the model to be able to capture features of observed hormone levels as well as to link parameters of the model to biological mechanisms. Ovarian hormones regulate the monthly female reproductive cycle and have been implicated as having effects on affective states and eating behavior. The three major hormones in this system are estrogen, progesterone, and lutenizing hormone. These hormones are coupled together as a regulatory system. Estrogen level is associated with the release of lutenizing hormone by the hypothalamus. Lutenizing hormone triggers ovulation and the transformation of the dominant follicle into the corpus luteus which in turn produces progesterone. A differential equations model is developed that is biologically plausible and produces nonlinear cycling similar to that seen in a large ongoing daily-measure study of ovarian hormones and eating behavior.

The manuscript of this article accepted for publication can be requested as a pdf file from the first author: Steve Boker.